Crystallizing the Schur Q-functions

Maria Gillespie, University of California, Davis
Jake Levinson, University of Washington
Kevin Purbhoo, University of Waterloo

AMS Fall Western Sectional
Nov 4, 2017

Shifted tableaux

» Shifted partitions: Partitions with distinct parts; ith row
shifted to the right / steps.

A=(6,4,2,1)

Shifted tableaux

» Shifted partitions: Partitions with distinct parts; ith row
shifted to the right / steps.

L‘ A= (6,4,2
3,1

» Skew shape: \/u

Shifted tableaux

» Shifted partitions: Partitions with distinct parts; ith row
shifted to the right / steps.

1[12
2

1/
[1]1
3]

L

» Skew shape: \/u

» Semistandard tableaux: 1' <1 <2 <2<3 <3< is
alphabet, entries weakly increasing down and right. Primed
letters can only repeat in columns and unprimed only in rows.

Shifted tableaux

» Shifted partitions: Partitions with distinct parts; ith row
shifted to the right / steps.

1[12
2

1/
[1]1
3]

L

» Skew shape: \/u

» Semistandard tableaux: 1' <1 <2 <2<3 <3< is
alphabet, entries weakly increasing down and right. Primed
letters can only repeat in columns and unprimed only in rows.

» Canonical form: First i or /' is always unprimed in reading
order (read rows from bottom to top, 3111'21'12").

Shifted tableaux

» Jeu de Taquin sliding: Primed letters lose their primes when
sliding into the diagonal.

_‘

112

|1

|O~D>—H—\‘P—\‘
[\

Shifted tableaux

» Jeu de Taquin sliding: Primed letters lose their primes when
sliding into the diagonal.

_‘

112

|1

|O~D>—H—\‘P—\‘
[\

Shifted tableaux

» Jeu de Taquin sliding: Primed letters lose their primes when
sliding into the diagonal.

1112
1 2

Shifted tableaux

» Jeu de Taquin sliding: Primed letters lose their primes when
sliding into the diagonal.

1112
1/]1]2

Shifted tableaux

» Jeu de Taquin sliding: Primed letters lose their primes when
sliding into the diagonal.

1112
1/]1]2

Shifted tableaux

» Jeu de Taquin sliding: Primed letters lose their primes when
sliding into the diagonal.

| [1]2
(1] |1]2

Shifted tableaux

» Jeu de Taquin sliding: Primed letters lose their primes when
sliding into the diagonal.

| [1]2
[1]1]1]2

Shifted tableaux

» Jeu de Taquin sliding: Primed letters lose their primes when
sliding into the diagonal.

| [1]2
[1]1]1]2

Shifted tableaux

» Jeu de Taquin sliding: Primed letters lose their primes when
sliding into the diagonal.

U [1]2
[1]1]1]2
3]

Shifted tableaux

» Jeu de Taquin sliding: Primed letters lose their primes when
sliding into the diagonal.

U[1]1]2
[1]1] |2
3]

Shifted tableaux

» Jeu de Taquin sliding: Primed letters lose their primes when
sliding into the diagonal.

U[1]1]2
[1]1]2
3]

It

Shifted tableaux

» Jeu de Taquin sliding: Primed letters lose their primes when
sliding into the diagonal.

| (] [1i]1]2

It

Shifted tableaux

» Jeu de Taquin sliding: Primed letters lose their primes when
sliding into the diagonal.

U RRNE

It

Shifted tableaux

» Jeu de Taquin sliding: Primed letters lose their primes when
sliding into the diagonal.

i

1[1]2

It

H
BNE

Shifted tableaux

» Jeu de Taquin sliding: Primed letters lose their primes when
sliding into the diagonal.

|1

1[1]2

It

H
BNE

Shifted tableaux

» Jeu de Taquin sliding: Primed letters lose their primes when
sliding into the diagonal.

[1]1

1[1]2

It

BNE

Shifted tableaux

» Jeu de Taquin sliding: Primed letters lose their primes when
sliding into the diagonal.

[1]1]1]1]1]2

It

Shifted tableaux

» Jeu de Taquin sliding: Primed letters lose their primes when
sliding into the diagonal.

[1]1]1]1]1]2

Shifted tableaux

» Jeu de Taquin sliding: Primed letters lose their primes when
sliding into the diagonal.

[1]1]1]1]1]2

» Highest weight: Rectifies to shifted tableau with all i's in ith
row:

1]1]

N
’wr\)»—\

Standardization

» Standardization order: Break ties by reading order for
unprimed entries, reverse reading order for primed entries

_‘ U1 _‘ 1[5]6

12 217
[1]1 13]4
3] 18]

Standardization

» Standardization order: Break ties by reading order for
unprimed entries, reverse reading order for primed entries

_‘ U1 _‘ 1[5]6

12 217
[1]1 134
3] 18]

L L

» Weight: wt(T) = (my, mp,...) where m; is the total number
of i and /' entries in T. Above, weight is (5,2,1).

Standardization

» Standardization order: Break ties by reading order for
unprimed entries, reverse reading order for primed entries

1"[12
2

1/
[1]1 13
3]

ot
(@)

|OO»J>[\'J>—t

L L

» Weight: wt(T) = (my, mp,...) where m; is the total number
of i and /' entries in T. Above, weight is (5,2,1).

> Monomial weight: x"(T) = x™xJ™ ... Above, x?x3x3.

Shifted Littlewood-Richardson Rule

» Schur Q-functions: Let {(wtT) be the number of nonzero
entries in wt T.

Q,\/M(Xl,)@, ») — 2 2é(th)xth
TeShST(Mu)

Shifted Littlewood-Richardson Rule

» Schur Q-functions: Let {(wtT) be the number of nonzero
entries in wt T.

Q/\/M(X]_,X2, N) _ 2 2E(WtT)xth
TeShST(\/1)

» Shifted Littlewood-Richardson rule:

Qo/u = Z quV Q

where £, is the number of highest weight canonical shifted
semistandard tableaux of shape \/u and weight v.

Shifted Littlewood-Richardson Rule

» Schur Q-functions: Let {(wtT) be the number of nonzero
entries in wt T.

Q/\/M(X]_,X2, N) _ 2 2E(WtT)xth
TeShST(\/1)

» Shifted Littlewood-Richardson rule:

Qu/u = Z f;f\v Q

where £, is the number of highest weight canonical shifted
semistandard tableaux of shape \/u and weight v.

» Question: Can we detect these highest weight skew shifted
tableaux with crystal-like raising operators?

Shifted Littlewood-Richardson Rule

» Schur Q-functions: Let {(wtT) be the number of nonzero
entries in wt T.

Q/\/M(X]_,X2, N) _ 2 2E(WtT)xth
TeShST(\/1)

» Shifted Littlewood-Richardson rule:

Qu/u = Z f;f\v Q

where £, is the number of highest weight canonical shifted
semistandard tableaux of shape \/u and weight v.

» Question: Can we detect these highest weight skew shifted
tableaux with crystal-like raising operators? (Main result:
yes!)

Straight shapes, two letters

» Restrict to alphabet {1’,1,2’,2}. Shape can have two rows:

[t]1]1]2] & _ [1]t]2]2]
il 2 2 TLH
[1]1]1]1] — SH — o [1]2]2]2]
2 2
— Fo [] MHE 2'\2\% —
2] A 2]

Or one row:

[[alaln) fe (Aalale) fe (Ail2l2) Bk [1120202] 2 (2121212]) fhe
-
F Fi F Fi F

Straight shapes, two letters

» Restrict to alphabet {1’,1,2’,2}. Shape can have two rows:

[t]1]1]2] & _ [1]t]2]2]
il 2 2 TLH
[1]1]1]1] — SH — o [1]2]2]2]
2 2
— Fo [] PEE 2'\2\% —
2] A 2]

Or one row:

[[alaln) fe (Aalale) fe (Ail2l2) Bk [1120202] 2 (2121212]) fhe
-
F Fi F Fi F

» Need two operators Fi, F| and their partial inverses E, Ej.

Straight shapes, two letters

» Restrict to alphabet {1’,1,2’,2}. Shape can have two rows:

(1[1]af2] A _ [1]i]2]2]

F 2 2
\111\1\/ — N — 1[2]2]2]
2 2
S S s R s e el R R zf\z\/ =

2] n]
Or one row:
\1\1\1\1\»\1\1\1\2\ \1\1\2\2\ \1\2\2\2\ \2\2\2\2\»0)
F] F] Fl F] Fl

» Need two operators Fi, F| and their partial inverses E, Ej.

» Coplacticity: Extend to skew shapes by applying outer slides.

Straight shapes, two letters

» Restrict to alphabet {1’,1,2’,2}. Shape can have two rows:

[[al2] A [Ja]ale]

B 1]2 < 22 LA
[r]1]1] SH
1]2

2,‘ N ‘ 11, é/ 2‘ %}

112 F

o[—

=

4
=
-

Or one row:
L]/ [af2] / []2]2] / [J1]2]2] / []2]2]2] /

=< == 1 = |2 == |2 e
* o o o o Iy

— =

» Need two operators Fi, F| and their partial inverses E, Ej.

» Coplacticity: Extend to skew shapes by applying outer slides.

Straight shapes, two letters

» Restrict to alphabet {1’,1,2’,2}. Shape can have two rows:

[t]1]1]2] & _ [1]t]2]2]
it 2 2 TLH
[1]1]1]1] — SH — o [1]2]2]2]
2 o o s O
2] A 2]

Or one row:

[[alaln) fe (Aalale) fe (Ail2l2) Bk [1120202] 2 (2121212]) fhe
-
F Fi F Fi F

» Need two operators Fi, F| and their partial inverses E, Ej.
» Coplacticity: Extend to skew shapes by applying outer slides.

» General operators: F;, F!, Ej, E! act on the strip of
i'i, (i +1),i 41 letters, by JDT rectifying, applying the
appropriate operator, and unrectifying.

Straight shapes, two letters

» Restrict to alphabet {1’,1,2’,2}. Shape can have two rows:

2] A [1]1]2]2]

[1]1
Fy 2 2
[1]1 1\1\/ — N — 12]2]2]
— o 1]]2] PEE z'\Q\/ —

2] n]
Or one row:
\1\1\1\1\»\1\1\1\2\ \1\1\2\2\ \1\2\2\2\ \2\2\2\2\»0)
F] F] Fl F] Fl

» Need two operators Fi, F| and their partial inverses E, Ej.
» Coplacticity: Extend to skew shapes by applying outer slides.

» General operators: F;, F!, Ej, E! act on the strip of
i'i, (i +1),i 41 letters, by JDT rectifying, applying the
appropriate operator, and unrectifying.

» Highest weight iff killed by all raising operators E;, E.

1]1[1]

/

E.

ll\

mAm
172 [0
7k =
I

&
5
Il
S
o S
=) - 9\
R
3 o
[
— .
%=
Q S|4
= Q |L
— o
L O
(0o 3z
H N
>
|-
O

\113\ [1]1]3]

\12'3\ \122\

[1]2]3] [1]2]3]

[1]3]3]

[2]2]2]

[2]2]3] [2]2]3]

Crystal-like structure

» “Crystal graph” for i =1, 2:

/\

! 14 3
hh PR ><N/
¥ < ~a
» Characters are Schur
) 2
Q-functions: N)
(wt(T),, naalneelonoonG
owt(T)) wt T 1]21[3] [1]2]2 1[1]3] [1[1[3
Z 2 = Q@ 2 3] 3]
T in crystal) b =
Graph structure implies @) 2 ?,) 2] [:2; 3] [g &l

is symmetric.

Crystal-like structure

» “Crystal graph” for i =1, 2:
Fi F Fy F}

» Characters are Schur
Q-functions:

Z 2€(Wt(T)) wtT Q)\

T in crystal

Graph structure implies @)
is symmetric.

» Connected components for
skew shapes give LR rule for

Qy/p-

/\

;M/

[]2]3] [1]2 13
13] 3]
[2]2]2] [1]2]3] [1]2]3]
3 3 3]

Lattice walks of words

» Walk of w = wyws - - w,, € {17,1,2',2}" is a lattice walk in
first quadrant from (xp, yo) = (0,0) to (xn, ¥n), with w;

labeling the step (x;,y;) — (xi+1,Yi+1). Directions:

BN if x;y; =0
- if xjy; # 0

» Example: The walk of 1222'11'122 looks like:

Properties of lattice walks (G., Levinson, Purbhoo)

» Rectification: Endpoint (x,, y,) tells much about rect(w):

—1> 1/
2{ 2}1 (1]1]1]1]2][2]2]

Properties of lattice walks (G., Levinson, Purbhoo)

» Rectification: Endpoint (x,, y,) tells much about rect(w):
» Shape is ((n + xp + ¥n)/2, (0 — Xn — ¥n)/2).

e 1/
2{ 2}1 (1]1]1]1]2][2]2]

Properties of lattice walks (G., Levinson, Purbhoo)

» Rectification: Endpoint (x,, y,) tells much about rect(w):

» Shape is ((n + xp + ¥n)/2, (0 — Xn — ¥n)/2).
» Weight is ((n 4+ xn — yn)/2, (0 — X0 + yn)/2).

e 1/
2{ 2}1 (1]1]1]1]2][2]2]

Properties of lattice walks (G., Levinson, Purbhoo)

» Rectification: Endpoint (x,, y,) tells much about rect(w):

» Shape is ((n + xp + ¥n)/2, (0 — Xn — ¥n)/2).
» Weight is ((n 4+ xn — yn)/2, (0 — X0 + yn)/2).

2
2/
—1> 1/
2{ 2}1 (1]1]1]1]2][2]2]
2[2
]

» Highest weight: A word w with letters in {1’,1,2' 2} has
Ei(w) = E{(w) = @ iff its walk ends on the x-axis.

Properties of lattice walks (G., Levinson, Purbhoo)

» Rectification: Endpoint (x,, y,) tells much about rect(w):

» Shape is ((n + xp + ¥n)/2, (0 — Xn — ¥n)/2).
» Weight is ((n 4+ xn — yn)/2, (0 — X0 + yn)/2).

2
2/
—1> 1/
2{ 2}1 (1]1]1]1]2][2]2]
2[2
]

» Highest weight: A word w with letters in {1’,1,2' 2} has
Ei(w) = E{(w) = @ iff its walk ends on the x-axis.

» Proofs via Knuth equivalence: An elementary shifted Knuth
move (Sagan, Worley) does not change the endpoint of the
walk.

The operation F; on words

» Let w e {1’,1,2,2}". An F-critical substring of w is a
substring of any of the types and locations below.

| Type [Substring [

Starting Location

[Transformation ‘

1F 1(1NY*2" | y=0o0r y=1,x>1 2'(1)*2
2F 1(2)*1 | x=0 o0 x=1,y>1 2'(2)*1
3F 1 Yy =0 2
4F 1 x=0 2’
5F lor2 x=1y=>1 %]

The operation F; on words

» Let w e {1’,1,2,2}". An F-critical substring of w is a
substring of any of the types and locations below.

| Type [Substring [

Starting Location

[Transformation ‘

1F 1(1NY*2" | y=0o0r y=1,x>1 2'(1)*2
2F 1(2)*1 | x=0 o0 x=1,y>1 2'(2)*1
3F 1 Yy =0 2
4F 1 x=0 2’
5F lor2 x=1y=>1 %]

» Final substring is the F-critical substring w; - - - w; with

largest ;.

The operation F; on words

» Let w e {1’,1,2,2}". An F-critical substring of w is a
substring of any of the types and locations below.

| Type [Substring [

Starting Location

[Transformation ‘

1F 1(1NY*2" | y=0o0r y=1,x>1 2'(1)*2
2F 1(2)*1 | x=0 o0 x=1,y>1 2'(2)*1
3F 1 Yy =0 2
4F 1 x=0 2’
5F lor2 x=1y=>1 %]

» Final substring is the F-critical substring w; - - - w; with

largest ;.

» F1(w): Replace w; - - - w; with its transformation.

The operation F; on words

» Let w e {1’,1,2,2}". An F-critical substring of w is a
substring of any of the types and locations below.

| Type [Substring [

Starting Location

[Transformation ‘

1F 1(1NY*2" | y=0o0r y=1,x>1 2'(1)*2
2F 1(2)*1 | x=0 o0 x=1,y>1 2'(2)*1
3F 1 Yy =0 2
4F 1 x=0 2’
5F lor2 x=1y=>1 %]

» Final substring is the F-critical substring w; - - - w; with

largest ;.

» F1(w): Replace w; - - - w; with its transformation.

» If no F-critical substrings, Fi(w) = @.

Example

| Type | Substring [Starting Location | Transformation |
IF | 1102 | y=0 o y=1x>1 212
2F 1(2)*1" [x=0 o x=1,y>1 2'(2)*1
3F 1 y=0 2
4F 1 x=0 2’
5F 1or2 x=1y=>1 2}

The word w = 1222'11’122 has a type 2F substring at 11/, and
this is its final F-critical substring. Thus F;(w) = 1222/2/1122.

2
—_—
1
2 2 2|1
2! 2!
1 v
2] 2‘ 1 A 2
2[2
*—> *—>

The operation E; on words

» Let w e {1',1,2,2}". An E-critical substring of w is a
substring of any of the types and locations below.

| Type [Substring [Starting Location | Transformation |
1E 22)*1 [x=0o0o x=1,y>1 1(2)*1
2E 2(1)*2 | y=0o y=1,x>1 1(1)*2
3E 7 y=0 i
4E 2 x=0 1
5E lor2 y=1x=>1 %]

» Final substring is the E-critical substring w; - - - w; with
largest i, breaking ties by largest j.

» E1(w) defined by applying the appropriate transformation to
the final E-critical substring of w.

» If there are no E-critical substrings we define E1(w) = @.

Properties of E; and F; (G., Levinson, Purbhoo.)

Theorem. The operators E; and F; are:

» Defined on tableaux: Applying E; or F; to the reading word
of a skew shifted semistandard tableau preserves
semistandardness of the entries.

» Agree with diagram on straight shapes:

R |
[1]1]1]1]
e

af1]2] m [1]1]2]2]
B A
1

o F{
F a1
S
1]1]2] *3\112/\2\% —
2 £ 2

2[2]

» Coplactic: E; and F; commute with all sequences of inner or
outer JDT slides. (Difficult!)

» Partial inverses: E;(T) = T'ifand only if Fi(T')=T.

Primed operators E; and F|

» E{(w) is defined by changing the last 2’ in w to a 1 if this
does not change the standardization. Otherwise Ej(w) = &.

» F{(w) is defined by changing the last 1 in w to a 2 if this
does not change the standardization. Otherwise F](w) = &.

» Two maximal F{ chains:
12211 £, 120071 i» >

1111’1 1 1121'1 1 1221'1 A - 22211’ A, 2222’1 A, 2222'2" L,

Primed operators E; and F|

» E{(w) is defined by changing the last 2’ in w to a 1 if this
does not change the standardization. Otherwise Ej(w) = &.

F{(w) is defined by changing the last 1 in w to a 2’ if this
does not change the standardization. Otherwise F](w) = &.

v

» Two maximal F{ chains:
12211 £, 120071 i» >
111171 5 11211 S 1201717 S 200117 B 00001 A 20000 A

» Theorem. The operations Ej and F{ are:

» Coplactic and well-defined on skew shifted tableaux.

» Partial inverses: if E{(T) = T’ then F{(T")=T.

» Have chains of length 2 unless the rectification shape has one
row; in the latter case they coincide with E; and Fi.

Properties

» E{, E1, F{, F1 all commute with each other.

Properties

» E{, E1, F{, F1 all commute with each other.

» E; and E] move the endpoint of the walk by (1,—1), F; and
F{ by (=1,1). Example of repeated F; followed by one Fj:

Properties

» E{, E1, F{, F1 all commute with each other.

» E; and E] move the endpoint of the walk by (1,—1), F; and
F{ by (=1,1). Example of repeated F; followed by one Fj:

o

1 iy
2] ll
*— > —_—
1 1 1

Properties

» E{, E1, F{, F1 all commute with each other.

» E; and E] move the endpoint of the walk by (1,—1), F; and
F{ by (=1,1). Example of repeated F; followed by one Fj:

o

1 iy
2] ll 2]
*— > —1>

1

Properties

» E{, E1, F{, F1 all commute with each other.

» E; and E] move the endpoint of the walk by (1,—1), F; and
F{ by (=1,1). Example of repeated F; followed by one Fj:

Properties

» E{, E1, F{, F1 all commute with each other.

» E; and E] move the endpoint of the walk by (1,—1), F; and
F{ by (=1,1). Example of repeated F; followed by one Fj:

Properties

» E{, E1, F{, F1 all commute with each other.

» E; and E] move the endpoint of the walk by (1,—1), F; and
F{ by (=1,1). Example of repeated F; followed by one Fj:

Properties

» E{, E1, F{, F1 all commute with each other.

» E; and E] move the endpoint of the walk by (1,—1), F; and
F{ by (=1,1). Example of repeated F; followed by one Fj:

2

Application: Type B Schubert curves

» Orthogonal Grassmannian OG(2n + 1, n): the type B
analog of Gr(n, k)

Application: Type B Schubert curves

» Orthogonal Grassmannian OG(2n + 1, n): the type B
analog of Gr(n, k)

» Can be defined as the variety of n-dimensional isotropic
(self-orthogonal) subspaces V of C2"*1 with respect to the
symmetric inner form {(a;), (b)) = >, aibont1—i.

Application: Type B Schubert curves

» Orthogonal Grassmannian OG(2n + 1, n): the type B
analog of Gr(n, k)

» Can be defined as the variety of n-dimensional isotropic
(self-orthogonal) subspaces V of C2"*1 with respect to the
symmetric inner form {(a;), (b)) = >, aibont1—i.

» Schubert varieties Q) (F) defined for shifted partitions \ in
the n x n staircase.

Application: Type B Schubert curves

» Orthogonal Grassmannian OG(2n + 1, n): the type B
analog of Gr(n, k)

» Can be defined as the variety of n-dimensional isotropic
(self-orthogonal) subspaces V of C2"*1 with respect to the
symmetric inner form {(a;), (b)) = >, aibont1—i.

» Schubert varieties Q) (F) defined for shifted partitions \ in
the n x n staircase.

» Schubert curves: certain 1-dimensional intersections of
Schubert varieties

Schubert curves in the Orthogonal Grassmannian
» Real Schubert curves have a natural smooth covering of RP?!,

monodromy operator given by a certain operation on highest
weight skew tableau with a marked inner corner:

1/[1]1
x[1']2

2
3

L

Schubert curves in the Orthogonal Grassmannian
» Real Schubert curves have a natural smooth covering of RP?!,

monodromy operator given by a certain operation on highest
weight skew tableau with a marked inner corner:

1/[1]1
x[1']2

2
3

L

» Monodromy operator:
1. Rectify, with x]=0
2. Slide the [X] to an outer corner with an outer JDT slide
3. Unrectify to the original shape, with X] = o0
4. Slide the [x] back to an inner corner

Schubert curves in the Orthogonal Grassmannian
» Real Schubert curves have a natural smooth covering of RP?!,

monodromy operator given by a certain operation on highest
weight skew tableau with a marked inner corner:

1/[1]1
x[1']2

2
3

L

» Monodromy operator:
1. Rectify, with x]=0
2. Slide the [X] to an outer corner with an outer JDT slide
3. Unrectify to the original shape, with X] = o0
4. Slide the [x] back to an inner corner

» Operators F;, F! give us a new easier rule that avoids
rectification!

THANK YOU!

Local rule (G., J. Levinson and K. Purbhoo)

» Local rule for steps 1 — 3, without rectifying:

» Phase 1. Switch [X] with the nearest 1’ after it in reading
order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 2’ and 2, and so on until there
is no i’ after it for some i.

_‘

—_
BNEE

Local rule (G., J. Levinson and K. Purbhoo)

» Local rule for steps 1 — 3, without rectifying:
» Phase 1. Switch [X] with the nearest 1’ after it in reading
order, if one exists, and then with the nearest 1 before it in

reading order. Do the same for 2’ and 2, and so on until there
is no i’ after it for some i.

C

—_
|c,ow><r—¢

Local rule (G., J. Levinson and K. Purbhoo)

» Local rule for steps 1 — 3, without rectifying:

» Phase 1. Switch [X] with the nearest 1’ after it in reading
order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 2’ and 2, and so on until there
is no i’ after it for some i.

C

X
|CO[\D»—\P—\‘

Local rule (G., J. Levinson and K. Purbhoo)

» Local rule for steps 1 — 3, without rectifying:

» Phase 1. Switch [X] with the nearest 1’ after it in reading
order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 2’ and 2, and so on until there
is no i’ after it for some i.

—_
—_

C

2/

|CO[\D»—\P—\‘

Local rule (G., J. Levinson and K. Purbhoo)

» Local rule for steps 1 — 3, without rectifying:

» Phase 1. Switch [X] with the nearest 1’ after it in reading
order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 2’ and 2, and so on until there
is no i’ after it for some . At this point go to Phase 2.

C

2/

|CO><»—\P—\‘

Local rule (G., J. Levinson and K. Purbhoo)

» Local rule for steps 1 — 3, without rectifying:

» Phase 1. Switch [X] with the nearest 1’ after it in reading
order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 2’ and 2, and so on until there
is no i’ after it for some . At this point go to Phase 2.

» Phase 2. Replace the [x] with i’ and apply F;, Fiy1,... in that
order until only one entry is changing. Then replace that entry

with [X.
171111
1’ 2

1
2/
3

Local rule (G., J. Levinson and K. Purbhoo)

» Local rule for steps 1 — 3, without rectifying:

» Phase 1. Switch [X] with the nearest 1’ after it in reading
order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 2’ and 2, and so on until there
is no i’ after it for some . At this point go to Phase 2.

» Phase 2. Replace the [x] with i’ and apply F;, Fiy1,... in that
order until only one entry is changing. Then replace that entry

with [X.
171111
11112

Local rule (G., J. Levinson and K. Purbhoo)

» Local rule for steps 1 — 3, without rectifying:

» Phase 1. Switch [X] with the nearest 1’ after it in reading
order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 2’ and 2, and so on until there
is no i’ after it for some . At this point go to Phase 2.

» Phase 2. Replace the [x] with i’ and apply F;, Fiy1,... in that
order until only one entry is changing. Then replace that entry

with [X.
171111
1 2

1
2]3
4]

Local rule (G., J. Levinson and K. Purbhoo)

» Local rule for steps 1 — 3, without rectifying:

» Phase 1. Switch [X] with the nearest 1’ after it in reading
order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 2’ and 2, and so on until there
is no i’ after it for some . At this point go to Phase 2.

» Phase 2. Replace the [x] with i’ and apply F;, Fiy1,... in that
order until only one entry is changing. Then replace that entry

with [X.
171111
1 2

1
2[3
1]

Local rule (G., J. Levinson and K. Purbhoo)

» Local rule for steps 1 — 3, without rectifying:

» Phase 1. Switch [X] with the nearest 1’ after it in reading
order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 2’ and 2, and so on until there
is no i’ after it for some . At this point go to Phase 2.

» Phase 2. Replace the [x] with i’ and apply F;, Fiy1,... in that
order until only one entry is changing. Then replace that entry

with [X.
171111
1 2

1
2[3
6]

Local rule (G., J. Levinson and K. Purbhoo)

» Local rule for steps 1 — 3, without rectifying:

» Phase 1. Switch [X] with the nearest 1’ after it in reading
order, if one exists, and then with the nearest 1 before it in
reading order. Do the same for 2’ and 2, and so on until there
is no i’ after it for some . At this point go to Phase 2.

» Phase 2. Replace the [x] with i’ and apply F;, Fiy1,... in that
order until only one entry is changing. Then replace that entry

with [X.
171111
1 2

1
213
Ead

Larger Phase 2 example

x|3

ka|l\.’>r—\

Larger Phase 2 example

1']3

ka|l\.’>r—\

Larger Phase 2 example

1[3

2/

ka|l\.’>r—\

Larger Phase 2 example

1[3

ka|02r—\

Larger Phase 2 example

1[3

»-lk"’i|wr—\

Larger Phase 2 example

1[3

Cﬂ»-lk|wr—\

Larger Phase 2 example

1[3

@Hk|wr—\

Larger Phase 2 example

1[3

\1»4;|C»Dr—\

Larger Phase 2 example

1[3

XH>|C»D»—\

Application: Schubert curves

» Grassmannian: Gr(n, k) is the variety of k-dimensional
subspaces of C".

Application: Schubert curves

» Grassmannian: Gr(n, k) is the variety of k-dimensional
subspaces of C".

» Schubert varieties: Certain subvarieties Q(F) where) fits
in a k x (n— k) rectangle HH and F is a complete flag.

Application: Schubert curves

» Grassmannian: Gr(n, k) is the variety of k-dimensional
subspaces of C".

» Schubert varieties: Certain subvarieties Q) (F) where X fits
in a k x (n— k) rectangle HH and F is a complete flag.

» Schubert curve: A one-dimensional intersection of Schubert
varieties.

Application: Schubert curves

» Grassmannian: Gr(n, k) is the variety of k-dimensional
subspaces of C".

» Schubert varieties: Certain subvarieties Q) (F) where X fits
in a k x (n— k) rectangle HH and F is a complete flag.

» Schubert curve: A one-dimensional intersection of Schubert
varieties.

» Special Schubert curves: Three partitions «, 3,y with
la| + |B] + || = k(n — k) — 1. Define

S = 5(a, 8,7) = Qa(Fo) N Qp(F1) N Qy(Foo)

where the flag F; is the maximally tangent flag at t of the
rational normal curve in P"~1:

(1:t)l—>(1:t:t2:---:t”_1)

Real geometry of S

Real geometry of S

! D
sh

(t ¢ 0) i_z_ngsh ’/) (t : =)

B (t=1)

Theorem(s). (Levinson, Speyer.) There is a degree-N map
f : S — P! that makes S(R) a smooth covering of the circle RP!,

with finite fibers of size N = CanB

Real geometry of S

f7H(o0) =

o) = ;
LR(a. 8,0.7)

LR(e, 3, 8, %)

» (Fiber over 0) < Tableaux of shape </« with one inner
corner x and the rest a highest weight tableau of weight 5.

» (Fiber over o) <> Tableaux of shape v¢/a with one outer
corner x and the rest a highest weight tableau of weight 5.

Real geometry of S

a I

EIEIE)
(T30 (o) =
LR(a. 5.0,7)

o) =
LR(a,00, 8, 7)

» The arcs of S(R) covering R_ and R respectively induce the
shuffling and evacuation-shuffling bijections sh and esh:

esh
LR(e, 0, 8,7) <= LR(a,,0,7)
sh

» Monodromy operator: w = sh o esh. Cycles of w correspond
to connected components of S(R).

Real geometry of S

f7H(o0) =
LR(. 3,0,7)

o) =
LR(a,0. 4 7)

» The arcs of S(R) covering R_ and R respectively induce the
shuffling and evacuation-shuffling bijections sh and esh:

esh
LR(Oé, Da B? ’7) : LR(OZ, 67 Da PY)
sh

» Monodromy operator: w = sh o esh. Cycles of w correspond
to connected components of S(R).

Shuffling

» Shuffling, or JDT: Do an outer jeu de taquin slide with the
as the empty square to get an element of LR(«,, 3,7).

1
212

—
w

QU= | W |~
X|Idxs|w|no|—

Shuffling

» Shuffling, or JDT: Do an outer jeu de taquin slide with the
as the empty square to get an element of LR(«,, 3,7).

1
212

—
w

QU= | W |~
X|Idxs|w|no|—

Shuffling

» Shuffling, or JDT: Do an outer jeu de taquin slide with the
as the empty square to get an element of LR(«,, 3,7).

1
212

—
w

X |~ |w|r—

Sl | W |IN | =

Shuffling

» Shuffling, or JDT: Do an outer jeu de taquin slide with the
as the empty square to get an element of LR(«,, 3,7).

1
212

—
w

= X W] =

Sl k| W |IN |~

Shuffling

» Shuffling, or JDT: Do an outer jeu de taquin slide with the
as the empty square to get an element of LR(«,, 3,7).

1
212

._
w

| X | =

(S 8 IS FIUR T NC P

Shuffling

» Shuffling, or JDT: Do an outer jeu de taquin slide with the
as the empty square to get an element of LR(«,, 3,7).

1
212

—
w

B~ (N | =

Sl | W ||

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.

11171 X11]1
X122 112(2]2
11213 1

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.

» Shuffling
1111 X|11[11]1
X122 112212
1123 1

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.

» Shuffling
1111 1111
2|2 2122
1123 3 1

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.

» Shuffling
1111 1111
2|2 2(x]12|2
1123 312 1

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.

» Shuffling
1111 1111
2|2 212 %x|2
1123 3 1

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.
» Shuffling

» Un-rectification: Treat x as largest entry.

11171 1117111
212 2122 |X
11213 312 1

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.
» Shuffling

» Un-rectification: Treat x as largest entry.

11171 11111
212 21212
11213 312 1

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.
» Shuffling

» Un-rectification: Treat x as largest entry.

11171 111 1
212 2122 |X
11213 312 1

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.
» Shuffling

» Un-rectification: Treat x as largest entry.

11171 1 111
212 2122 |X
11213 312 1

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.
» Shuffling

» Un-rectification: Treat x as largest entry.

11171 11111
212 2122 |X
11213 312 1

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.
» Shuffling

» Un-rectification: Treat x as largest entry.

11171 11111
212 2122 |X
11213 3|1

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.
» Shuffling

» Un-rectification: Treat x as largest entry.

11171 11171
212 212 |X%
11213 2131

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.
» Shuffling

» Un-rectification: Treat x as largest entry.

11171 11171
212 212 |X%
11213 2 3

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.
» Shuffling

» Un-rectification: Treat x as largest entry.

1111 1111
212 2| X
11213 21213

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.

» Shuffling

» Un-rectification: Treat x as largest entry.

1(1]1 11

2|2 112X
11213 21213

T esh(T)

Evacuation-shuffling

» Conjugation of shuffling by JDT rectification.
» Rectification: Treat x as 0.

Shuffling

» Un-rectification: Treat x as largest entry.

v

1111 111
212 12|
11213 21213
T esh(T)
» Shuffle again to compute w = sh o esh:
X111
wT: 11112

Local rule for evacuation-shuffling

» Recall: esh consists of rectifying, shuffling, and un-rectifying.
» (G., Levinson.) Local rule, without rectifying: Start at i = 1.

[N}
[N}
w

B~ X
w
W

[12]3]5

Local rule for evacuation-shuffling

» Recall: esh consists of rectifying, shuffling, and un-rectifying.

» (G., Levinson.) Local rule, without rectifying: Start at i = 1.

> Phase 1. Switch [x] with the nearest i prior to it in reading order, if
one exists. Increment / by 1 and repeat.

[N}
[N}
w

B~ X
w
W

[12]3]5

Local rule for evacuation-shuffling

» Recall: esh consists of rectifying, shuffling, and un-rectifying.

» (G., Levinson.) Local rule, without rectifying: Start at i = 1.

> Phase 1. Switch [x] with the nearest i prior to it in reading order, if
one exists. Increment / by 1 and repeat.

[N}
N}
w

| X[
w
B

[12]3]5

Local rule for evacuation-shuffling

» Recall: esh consists of rectifying, shuffling, and un-rectifying.

» (G., Levinson.) Local rule, without rectifying: Start at i = 1.

> Phase 1. Switch [x] with the nearest i prior to it in reading order, if
one exists. Increment / by 1 and repeat.

[N}
N}
w

=N
w
I

[x|3]|5

Local rule for evacuation-shuffling

» Recall: esh consists of rectifying, shuffling, and un-rectifying.

» (G., Levinson.) Local rule, without rectifying: Start at i = 1.
> Phase 1. Switch [x] with the nearest i prior to it in reading order, if
one exists. Increment / by 1 and repeat.
If the [X] precedes all of the i's in reading order, go to Phase 2.

1[1]1]

N}
[N}
w

=N
w
N

[x|3]5

Local rule for evacuation-shuffling

» Recall: esh consists of rectifying, shuffling, and un-rectifying.

» (G., Levinson.) Local rule, without rectifying: Start at i = 1.
> Phase 1. Switch [x] with the nearest i prior to it in reading order, if
one exists. Increment / by 1 and repeat.
If the [X] precedes all of the i's in reading order, go to Phase 2.
> Phase 2. Replace the [x] with i and apply F;, Fit1, ... in that order
until only one entry is changing. Then replace that entry with [X].

1[1]1]
1[1]1]2]2
212[2]3
3134

414
[x|3]5

Local rule for evacuation-shuffling

» Recall: esh consists of rectifying, shuffling, and un-rectifying.

» (G., Levinson.) Local rule, without rectifying: Start at i = 1.
> Phase 1. Switch [x] with the nearest i prior to it in reading order, if
one exists. Increment / by 1 and repeat.
If the [X] precedes all of the i's in reading order, go to Phase 2.
> Phase 2. Replace the [x] with i and apply F;, Fit1, ... in that order
until only one entry is changing. Then replace that entry with [X].

1[1]1]
1[1]1]2]2
212[2]3
3|3[4

414
[13]3]5

Local rule for evacuation-shuffling

» Recall: esh consists of rectifying, shuffling, and un-rectifying.

» (G., Levinson.) Local rule, without rectifying: Start at i = 1.
> Phase 1. Switch [x] with the nearest i prior to it in reading order, if
one exists. Increment / by 1 and repeat.
If the [X] precedes all of the i's in reading order, go to Phase 2.
> Phase 2. Replace the [x] with i and apply F;, Fit1, ... in that order
until only one entry is changing. Then replace that entry with [X].

1[1]1]
1[1]1]2]2
212[2]3
3|3[4

414
[3]4]5

Local rule for evacuation-shuffling

» Recall: esh consists of rectifying, shuffling, and un-rectifying.

» (G., Levinson.) Local rule, without rectifying: Start at i = 1.
> Phase 1. Switch [x] with the nearest i prior to it in reading order, if
one exists. Increment / by 1 and repeat.
If the [X] precedes all of the i's in reading order, go to Phase 2.
> Phase 2. Replace the [x] with i and apply F;, Fit1, ... in that order
until only one entry is changing. Then replace that entry with [X].

1[1]1]
1[1]1]2]2
212[2]3
313[5

414
[3]4]5

Local rule for evacuation-shuffling

» Recall: esh consists of rectifying, shuffling, and un-rectifying.

» (G., Levinson.) Local rule, without rectifying: Start at i = 1.
> Phase 1. Switch [x] with the nearest i prior to it in reading order, if
one exists. Increment / by 1 and repeat.
If the [X] precedes all of the i's in reading order, go to Phase 2.
> Phase 2. Replace the [x] with i and apply F;, Fit1, ... in that order
until only one entry is changing. Then replace that entry with [X].

1[1]1]
1[1]1]2]2
212[2]3
313[6

414
[3]4]5

Local rule for evacuation-shuffling

» Recall: esh consists of rectifying, shuffling, and un-rectifying.

» (G., Levinson.) Local rule, without rectifying: Start at i = 1.
> Phase 1. Switch [x] with the nearest i prior to it in reading order, if
one exists. Increment / by 1 and repeat.
If the [X] precedes all of the i's in reading order, go to Phase 2.
> Phase 2. Replace the [x] with i and apply F;, Fit1, ... in that order
until only one entry is changing. Then replace that entry with [X].

1[1]1]
1[1]1]2]2
212[2]3
313]7

414
[3]4]5

Local rule for evacuation-shuffling

» Recall: esh consists of rectifying, shuffling, and un-rectifying.

» (G., Levinson.) Local rule, without rectifying: Start at i = 1.
> Phase 1. Switch [x] with the nearest i prior to it in reading order, if
one exists. Increment / by 1 and repeat.
If the [X] precedes all of the i's in reading order, go to Phase 2.
> Phase 2. Replace the [x] with i and apply F;, Fit1, ... in that order
until only one entry is changing. Then replace that entry with [X].

1[1]1]
1[1]1]2]2
212[2]3
313[x

414
[3]4]5

Geometric consequences (G., Levinson)

» Connections to K-theory: Pechenik and Yong's “genomic
tableaux” that are used to compute in K(Gr(n, k)) appear
naturally as steps in the algorithm.

Geometric consequences (G., Levinson)

» Connections to K-theory: Pechenik and Yong's “genomic
tableaux” that are used to compute in K(Gr(n, k)) appear
naturally as steps in the algorithm.

» Schubert curves can have arbitrarily high arithmetic genus
(connected w-orbits with many genomic tableaux appearing).

Geometric consequences (G., Levinson)

» Connections to K-theory: Pechenik and Yong's “genomic
tableaux” that are used to compute in K(Gr(n, k)) appear
naturally as steps in the algorithm.

» Schubert curves can have arbitrarily high arithmetic genus
(connected w-orbits with many genomic tableaux appearing).

» Schubert curves can have arbitrarily many connected
components, and in fact can be a disjoint union of arbitrarily
many copies of P! (when all tableaux of the given shape and
content are fixed by w).

