
Math 601 (Advanced Combinatorics) Lecture Notes

Maria Gillespie

Fall 2024

Note: This is a continuation and modification of the lecture notes that were posted in
Fall 2020. I’ll try to add to it each year that I teach 601.

1 Introduction

There is a growing body of knowledge that may be considered to be “classical” combina-
torics. This involves permutations and combinations, bijections, recurrence and generating
functions, graph theory, algorithms, and set systems such as matroids and combinatorial
designs.

These basic combinatorial objects and tools have now been established as being useful
throughout mathematics and the sciences. However, many of these objects were not always
so ‘established’. The theory of combinatorial designs, for instance, was considered to be
a purely recreational form of mathematics stemming from Latin squares and other riddles,
until it rose to prominence in the 1900’s as its applications to agricultural science experiments
became apparent. At that point the study of designs exploded and became a mainstream
area of combinatorics.

This leads to an interesting philosophical question: how do we know when a combina-
torics problem is ‘important’ to investigate? On the one hand, it is important to take fun
problems about Latin squares and extend them for the sake of building fun combinatorial
theory; indeed, down the road an important application might arise. On the other hand, it is
important to look at problems from other fields of mathematics or science with a combinato-
rial mindset, to figure out what the current important problems are and what combinatorial
tools need to be developed in order to solve them.

To summarize, there are two types of ‘importance’ that may apply to a combinatorial
problem or theory:

1. It is a natural extension of previously solved problems in an established area of com-
binatorics.

2. It arises from an important question in a different area of math or science.

In fact, these two types are closely intertwined, and pursuing both are necessary to make
new discoveries. Graph theory, for instance, may have arisen first in studies of maps, in
which roads and bridges connect various towns or landmarks (type 2 above). Later, Euler
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and others studied the resulting natural questions about graph theory in a theoretical manner
(type 1). This theory was discovered to have applications to countless other fields of study,
such as computer science, social networks, neuroscience, and more (type 2). These then lead
to more natural theoretical questions about graphs (type 1), and the theory becomes even
stronger for any future applications that may arise.

As this is a second year graduate course in combinatorics, the goal of this class is to
demonstrate how one modern area of combinatorics rose to prominence due to having type
2 importance. Specifically, we will focus on the area of algebraic combinatorics that is
sometimes called combinatorial representation theory, as it first arose from important
questions in representation theory and particle physics.

The combinatorial tools that arose in this field - namely, Young tableaux, symmetric
functions, crystals, and reflection groups - have since proven extremely useful to many other
areas of study, including intersection theory in algebraic geometry, polytope theory, and
probabilistic systems such as particle exclusion processes. Combinatorial representation
theory is therefore currently rising to greater prominence in mathematics, and perhaps will
itself eventually be considered to be part of “classical” combinatorics.

In order to introduce this rich area of combinatorics, we will first focus on some represen-
tation theoretic background from a high level view, and then build the combinatorial tools
needed to work with representations in a discrete manner.

2 A brief introduction to representation theory

We start with a brief overview and motivation of representation theory. It will be example-
heavy and many proofs will be omitted, since the focus of this class will be on the relevant
combinatorics.

We will primarily be studying representations of three objects: groups, Lie groups, and
Lie algebras. We start with groups, since they are the most well-known and the simplest to
define.

2.1 Representations of groups

A group is a set G along with an identity element e ∈ G and a multiplication ∗ : G×G→ G
satisfying:

• Associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c) for any a, b, c ∈ G

• Identity: e ∗ a = a ∗ e = a for any a ∈ G

• Inverses: For any a ∈ G, there exists a unique b ∈ G such that a ∗ b = b ∗ a = e.

We often write the multiplication as concatenation, for instance writing ab instead of a ∗ b,
as a shorthand.

Example 2.1. The cyclic group Cn has elements 1, a, a2, . . . , an−1 for some non-identity
element a, satisfying an = 1.
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Abstract groups can be difficult to get an intuitive grasp on or work with directly. For
instance, here are two different group structures on the set {e, a, b, c}, written out as full
multiplication tables.

G:

e a b c
e e a b c
a a e c b
b b c e a
c c b a e

H:

e a b c
e e a b c
a a b c e
b b c e a
c c e a b

There are more useful ways of representing the elements of these groups that allow
us to get a better handle on them. One might notice that the first group, G, is a copy of
C2 × C2, whereas the second, H, is C4. (Here, the product of two groups G ×H is simply
the Cartesian product as sets with pointwise multiplication.) Indeed, we can represent them
both as symmetry groups of diagrams in the plane.

Indeed, C2 ×C2 is the symmetry group of a non-circular ellipse, or in general any shape
that is fixed by both a horizontal and vertical reflection but not by any other reflection or
rotation (other than rotation by 180 degrees, which is the composition of the two reflections).
So for instance we can think of C2 × C2 as the symmetry group of the set of four points
{(2, 0), (−2, 0), (0, 1), (0,−1)}. If we label them as in Figure 1 at left, then we can represent
the group elements as the permutations

e = id, a = (13), b = (24), c = (13)(24).

This is called a permutation representation of the group G.

2.1.1 Examples of representations

We can alternatively think of the reflections as transformations of the plane, leading to a
matrix representation.

Example 2.2. Since a is the vertical reflection, it may be represented as the matrix

(
−1 0
0 1

)
,

which sends a point (x, y) (written as a column vector) to its reflection (−x, y) about the
y-axis. Similarly we have

e =

(
1 0
0 1

)
, a =

(
−1 0
0 1

)
, b =

(
1 0
0 −1

)
, c =

(
−1 0
0 −1

)
.

1

2

3

4

Figure 1: Diagrams having symmetry groups G and H respectively.
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Multiplying two of these matrices corresponds to composing the transformations, so we have
represented the group elements as matrices in a way that matrix multiplication captures the
structure of the group.

Example 2.3. In the case of the cyclic group H, the rotation matrices by 0◦, 90◦, 180◦, 270◦

respectively are (
1 0
0 1

)
,

(
0 −1
1 0

)
,

(
−1 0
0 −1

)
,

(
0 1
−1 0

)
.

Notice that this representation is a little more cumbersome to work with than the previous
example, because the matrices are not all diagonal. In general we want to find representations
that are “as diagonal as possible”. Indeed, if there is some matrix representation in which
every group element is represented by a “block diagonal” matrix of the form

A1

A2

Ak

. . .

0

0

where A1, A2, . . . , Ak are square matrices of fixed sizes λ1, λ2, . . . , λk, then multiplying two
such matrices simply boils down to multiplying each of the block components together. In
fact, each such block gives rise to a smaller matrix representation of the group consisting of
λi × λi submatrices of the original matrices. For instance, the two sub-representations that
arise from Example 2.2 are

e→ (1), a→ (−1), b→ (1), c→ (−1)

and
e→ (1), a→ (1), b→ (−1), c→ (−1).

Some elements are represented by the same matrix, but they are still representations because
every element is represented by a matrix and multiplication of matrices corresponds to the
group multiplication. Representations in which each element corresponds to a different
matrix are called faithful. The two examples above are not faithful representations.

Let us now look back at Example 2.3. Is there some change of coordinates we can
perform so that all the matrices are diagonal? In other words, are they simultaneously
diagonalizable, meaning that there exists a single matrix P such that for all elements M
of our set of matrices, PMP−1 is diagonal? Here’s where the following theorem comes in
handy.

Theorem 2.4. A set of matrices is simultaneously diagonalizable if and only if they are each
diagonalizable and all commute with each other.
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In this case, since we are representing abelian groups, the matrices must all commute,
so if they are diagonalizable then they are simultaneously diagonalizable. And to check if a
matrix is diagonalizable, one needs to see if it has an orthogonal set of eigenvectors.

Alas, over R, the rotation matrices have no eigenvectors. But over C, it is a different
story!

Indeed, interpreting it as a complex matrix representation, we have that all four matrices
have the common eigenvectors (1, i) and (i, 1). With respect to this basis, the four matrices
e, a, b, c act as the diagonal matrices(

1 0
0 1

)
,

(
i 0
0 −i

)
,

(
−1 0
0 −1

)
,

(
−i 0
0 i

)
,

and indeed we have a “more diagonal” representation.

2.1.2 Formal definitions

We now define representations of groups in three different ways. As we saw above, the
characteristics of a representation depend on what field you are working over (say R vs C)
and so we define them for a fixed arbitrary field F. Throughout the course, if F is unspecified,
we may assume that it is C.

Definition 2.5 (Definition 1). A representation of a group G over a field F is a homo-
morphism

ρ : G→ GLn(F)

where GLn(F) is the group of invertible n× n matrices over F.

Definition 2.6 (Definition 2). A representation of a group G over a field F is an F-vector
space V along with an action G y V by linear transformations, i.e. a homomorphism
ρ : G→ GL(V ).

Definition 2.7 (Definition 3). A representation of a group G over a field F is an FG-
module V . (Here FG is the group ring consisting of formal linear combinations of elements
of G over F. A module is essentially a “vector space over a ring”.)

Exercise 2.8. (Essential!) Prove that all three definitions are equivalent.

Exercise 2.9. For the examples of the groups G and H from Examples 2.2 and 2.3, express
these representations as a vector space with an action, and as a module.

With these definitions, we can then express the notions of diagonalizability and block
form more cleanly in terms of direct sums and irreducible representations.

Definition 2.10. The direct sum of two representations V and W of a group G (thought
of as vector spaces with an action of G) is the space V ⊕W along with the action Gy V ⊕W
by g · (v, w) = (g · v, g · w).

Exercise 2.11. Show that if all the matrices in a matrix representation of a group can be
conjugated by the same change of basis matrix to be written in block form
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A1

A2

Ak

. . .

0

0

where A1, A2, . . . , Ak are square matrices of fixed sizes λ1, λ2, . . . , λk, then the entire repre-
sentation can be written as a direct sum of k smaller matrix representations corresponding
to the k blocks.

In a direct sum V⊕W , both V andW areG-invariant subspaces or sub-representations
of V ⊕W . In general, any subspace of a representation V (thought of as a vector space)
that is fixed by the action of G is called a sub-representation of the action of G on V .

Definition 2.12. A representation is irreducible if it has no proper sub-representations.

Note a representation V being irreducible is not in general equivalent to being inde-
composable, meaning that it cannot be written as a direct sum of two nonzero sub-
representations.

Exercise 2.13. Consider the representation of the group

B = {upper triangular matrices in GL2(C)}

given by its defining action on C2, that is, every matrix is represented by itself. Show that
it has a one-dimensional sub-representation, but that it does not decompose as a direct sum
of irreducibles.

Exercise 2.14. Classify all of the sub-representations of Bn, the group of upper triangular
matrices in GLn(C). Which are irreducible?

The notions of irreducibility and indecomposability are indeed equivalent for finite groups
(and for simple Lie groups and semisimple Lie algebras, as we will see later.)

Theorem 2.15. For a finite group G, a representation V of G is irreducible if and only if
it is indecomposable.

Exercise 2.16. Consider the matrix representation of S3 as the symmetry group of the
triangle with coordinates (1, 0), (−1/2,

√
3/2), (−1/2,−

√
3/2) in the plane. Show that this

is an irreducible 2-dimensional representation, even over C.

Maschke’s theorem says further that (for finite groups G) if V has a sub-representation
W , then V = W ⊕ U for some U .

Corollary 2.17. Let V be a representation of a finite group G. Then V can be decomposed
as a direct sum of irreducible representations.
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In fact, this decomposition is unique (up to isomorphisms of the irreducible representa-
tions). This can be proven using Schur’s Lemma, which is a statement about homomor-
phisms of representations. A homomorphism f : V → W is simply a homomorphism as
FG-modules. Schur’s lemma can be stated as follows.

Lemma 2.18. If V and W are irreducible representations of G and f : V → W is a
homomorphism, then f is either the 0 map or an isomorphism.

Exercise 2.19. Consider the representation of S3 in which each permutation π ∈ S3 is sent

to its corresponding permutation matrix P , in which Pi,j =

{
1 j = π(i)

0 j 6= π(i)
.

1. Find a common eigenvector of all of the permutation matrices.

2. Write the representation as a direct sum of irreducible representations.

2.1.3 Tensor products and characters

In addition to direct sum, the tensor product is another fundamental operation on repre-
sentations.

Definition 2.20. Given vector spaces V and W over a field F, the tensor product of V
and W is the vector space V ⊗W defined by

V ⊗W = F〈v ⊗ w : v ∈ V,w ∈ W 〉/Q

where Q is the sub-vector space generated by all relations of the form

(av1 + bv2)⊗ (cw1 + dw2)− ac(v1 ⊗ w1)− ad(v1 ⊗ w2)− bc(v2 ⊗ w1)− bd(v2 ⊗ w2)

where a, b, c, d ∈ F and v1, v2 ∈ V,w1, w2 ∈ W . (Note that F〈v ⊗ w : v ∈ V,w ∈ W 〉 denotes
the vector space of all formal linear combinations of the symbols v ⊗ w where v and w are
any vectors in v and w).

Exercise 2.21. Prove that, if v1, . . . , vn form a basis for V and w1, . . . , wm form a basis for
W , then {vi ⊗wj : i ≤ n, j ≤ m} forms a basis for V ⊗W , and therefore dimV ⊗W = nm.

We can now use this definition to define the tensor product of two representations.

Definition 2.22. If V and W are representations of the group G, then V ⊗W along with
the “diagonal action” of G given by g(v ⊗w) = (gv ⊗ gw) is the tensor product of V and
W .

In matrix terms, suppose A is an m × m matrix and B is an n × n matrix. Then the
tensor product of the matrices A and B is the matrix having block form

a11B a12B · · · a1mB
a21B a22B · · · a2mB
...

...
am1B am2B · · · ammB
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Exercise 2.23. Show that, if ρ : G→ GL(Cm) and σ : G→ GL(Cn) are two representations
of G (thought of as collections of matrices ρ(g) and σ(g)), then the tensor product of these
two representations is the map

ρ⊗ σ : G→ GL(Cmn)

given by
ρ⊗ σ(g) = ρ(g)⊗ σ(g).

Exercise 2.24. (Trivial representation acts as multiplicative identity) Let V0 = C be the
trivial representation of the group G, in which every element of G acts as the identity (of
size 1). Show that, for any representation W of G, we have V0 ⊗W ∼= W .

Exercise 2.25. Show that tensor product distributes over direct sum:

V ⊗ (W ⊕ U) = (V ⊗W )⊕ (V ⊗ U)

and that tensor product is symmetric:

V ⊗W ∼= W ⊗ V.

Tensor products and direct sums both play nicely with characters, defined as follows.

Definition 2.26. The character of a representation ρ : G→ GL(V ) is the map χV : G→ C
defined by χV (g) = tr(ρ(g)).

We will learn much more about characters later in the course, but for now the essential
facts are as follows.

Theorem 2.27. The character of a representation uniquely determines the representation.
Moreover, characters are additive on direct sums and multiplicative on tensor products.

2.2 Lie groups

Now that we have defined the basic concepts of representation theory in the context of
finite groups, we turn to Lie groups and Lie algebras, for which the story is somewhat more
complicated but very analogous.

Definition 2.28. A (real or complex) Lie group is a real smooth manifold G (over R or C
respectively) along with a group structure whose group multiplication

G×G→ G

and inverse map G→ G are differentiable. Equivalently, we must have that the map

G×G→ G

(x, y) 7→ xy−1

is differentiable.
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We will not recall the precise definition of manifold here, but it will not be necessary for
moving forward in combinatorial representation theory. Roughly speaking, a manifold is a
topological space that is locally Euclidean; around each point there is an open set isomorphic
to Rn (or Cn) for some fixed n. In this case it is called an n-dimensional real (or complex)
manifold.

Remark 2.29. Those with a more geometric mindset might visualize a smooth n-dimensional
real variety instead, and indeed, the representation theory of Lie groups is nearly identical
to that of algebraic groups, which are algebraic varieties along with a group structure whose
multiplication and inverse maps are regular maps. All of the examples of Lie groups that we
will be considering throughout the class will also be algebraic groups.

We now present many examples of Lie groups and methods of constructing new Lie
groups from old.

2.2.1 First examples

Example 2.30. The space Rn is an n-dimensional real Lie group under vector addition.
Likewise, Cn is an n-dimensional complex Lie group, and a 2n-dimensional real Lie group.

Example 2.31. The space R− {0} is a 1-dimensional real Lie group under multiplication,
and C∗ = C− {0} is a complex Lie group under multiplication.

Example 2.32. The groups GLn(R) and GLn(C) under matrix multiplication are real and
complex Lie groups respectively, of dimension n2. Topologically, GLn (over either R or C)
can be realized as the subspace of the space of n × n matrices Mn (under the Euclidean
metric using the entries of the matrices as coordinates) that avoids the hypersurface defined
by the equation det(A) = 0.

The example of GLn above is crucial, as many more Lie groups can be constructed as
closed subgroups of GLn. Such a Lie group is called a matrix Lie group. In particular,
the following fact will allow us to easily define most matrix Lie groups:

Proposition 2.33. Any closed subgroup of a Lie group is a Lie group.

Since the topological structure is sometimes hard to get a handle on, it is often useful to
use the above proposition along with the following fact about closed subvarieties of algebraic
groups such as GLn.

Proposition 2.34. Let G be a matrix Lie group. If H ⊂ G is the solution set in G to a
system of finitely many polynomial equations in the entries of the matrices in G, then H is
closed in G.

In fact, the above proposition is true for any algebraic variety, but here we will only use
it for matrix Lie groups.

Let us now use Propositions 2.33 and 2.34 to construct many more examples of matrix
Lie groups.
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Example 2.35. Define Tn to be the subgroup of diagonal invertible matrices in GLn (over
either R or C). Then Tn is a closed subgroup since it is defined by setting all of the off-
diagonal entries to 0, all of which are polynomial equations (of degree 1). Thus Tn is a Lie
group.

The Lie group Tn is called the maximal torus in GLn, due to the fact that T2 ∼= (C∗)2,
which is topologically a torus, and no larger torus is a subgroup of GLn.

In general, given a Lie group G, its maximal torus is defined as the maximal compact,
connected, abelian subgroup T of G.

Example 2.36. Define Bn to be the subgroup of upper-triangular matrices in GLn. Then Bn

is a closed subgroup since it is defined by setting all of the entries strictly below the diagonal
to 0, and multiplying two upper-triangular matrices yields another upper-triangular matrix.

The Lie group Bn is called the (canonical) Borel subgroup in GLn. In general a Borel
subgroup of a matrix Lie group G is a maximal connected solvable subgroup. It is known
that all Borel subgroups of G are conjugate to one another, so in particular they can be
obtained by conjugating the subgroup Bn of upper triangular matrices by some change of
basis matrix.

The Borel in GLn can also be thought of as the stabilizer of the complete flag 0 ⊆ 〈e1〉 ⊆
〈e1, e2〉 ⊆ · · · 〈e1, e2, . . . , en〉 = Fn where F is either R or C and where ei is the i-th standard
basis vector. In general any Borel in GLn is the stabilizer of a complete flag.

Example 2.37. A parabolic subgroup is a proper subgroup containing the Borel. In
GLn, the parabolic subgroups are the stabilizers of partial flags. The stabilizer of the flag
0 = V0 ⊆ Vλ1 ⊆ Vλ1+λ2 ⊆ · · · ⊆ Vλ1+···+λk = Fn is the set of all block upper triangular
matrices of the form

A1

A2

Ak

. . .

0

∗

where A1, . . . , Ak are invertible square matrices of sizes λ1, λ2, . . . , λk. For a partition λ, this
is called the parabolic subgroup Pλ.

Exercise 2.38. Compute the dimension of the parabolic subgroup Pλ over its field of coef-
ficients.

Example 2.39. The subgroup of the Borel Bn in which all of the diagonal entries are 1 is
called the unipotent subgroup Nn. The unipotent parabolic Nλ is the subgroup of Pλ
in which the diagonal block matrices Ai are the identity matrix of size λi for all i.

Exercise 2.40. Compute the dimension of the unipotent parabolic Nλ over its coefficient
field.
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2.2.2 The classical groups

Example 2.41. The groups SLn(R) and SLn(C), known as the special linear groups, are
the subgroups of GLn(R) or GLn(C) respectively consisting of matrices A with det(A) = 1.
Since det(A) is a polynomial in the matrix entries, we know it SLn a closed subgroup and
therefore is a Lie group.

The special linear group can also be thought as the group of volume-preserving linear
transformations.

The next two examples are defined as subgroups of GLn that fix a certain bilinear form.

Example 2.42. The special orthogonal group SOn(R) is the group of matrices of de-
terminant 1 that preserve a fixed symmetric, positive definite bilinear form 〈, 〉 on Rn. Over
C, the special orthogonal group SOn(C) is the stabilizer of a fixed nondegenerate symmetric
bilinar form.

The canonical example of such a bilinear form (in both cases of R and C) is the “dot
product” in which

〈v, w〉 = v1w1 + v2w2 + · · ·+ vnwn = vTw,

and any other symmetric, positive definite bilinear form yields a symmetry group that is
conjugate to the copy of SOn coming from the canonical choice.

The condition that a matrix A preserves the form is equivalent to saying that 〈Av,Aw〉 =
〈v, w〉 for all v, w. But then 〈Av,Aw〉 = (Av)T (Aw) = vTATAw, and this equals vTw for
all v and w, so the condition is equivalent to ATA = I, or A−1 = AT . This, along with the
condition det(A) = 1, gives a set of polynomials that define the special orthogonal group as
a closed subgroup of GLn.

Geometrically, the group SOn(R) can also be thought of as the group of rotations of Rn.

Exercise 2.43. If we relax the restriction detA = 1 in the above example we get the
orthogonal groups On. Show that On(R) is disconnected.

Exercise 2.44. Show that SO2(R) is topologically a circle, and SO2(C) is the torus C∗.

Example 2.45. The symplectic groups Sp2n(R) and Sp2n(C) are the stabilizers of any
fixed symplectic form on R2n or C2n respectively. A nondegenerate bilinear form 〈, 〉 is
symplectic if it satisfies skew-symmetry :

〈v, w〉 = −〈w, v〉

for all w, v.

Exercise 2.46. Show that the skew-symmetry property is equivalent to the condition that
〈v, v〉 = 0 for all v.

Exercise 2.47. Show that if Rm or Cm has a symplectic form then m must be even. (Hint:
the nondegenerate condition must be used.)
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The canonical example of a symplectic form is 〈v, w〉 = vTΩw where

Ω =



1
1

1
1

−1
−1

−1
−1


(here the example is just shown for n = 4, but in general it is a block matrix where the lower
left block is a reverse diagonal matrix of all −1’s and the upper right is reverse diagonal with
1’s, and the rest 0’s).

Exercise 2.48. Show that the condition on a matrix M being in Sp2n is that MTΩM = Ω.

Remark 2.49. The symplectic group arises naturally in quantum mechanics. Suppose a
system of n quantum particles have positions x1, . . . , xn and momentum values p1, . . . , pn
respectively. Think of these values as defining a point (x1, . . . , xn, p1, . . . , pn) in phase space.
Define the operator qi to be the operator that returns the value of the i-th coordinate in this
phase space, so it would return xi if i ≤ n and pi−n if i > n. Then the commutators of these
operators satisfy (up to appropriate scalars)

qiqj − qjqi = [qi, qj] = Ωij

where Ω is the matrix defined above. This is a mathematical encoding of Heisenberg’s
uncertainty principle, which states that a particle’s position and momentum can never be
simultaneously known.

Example 2.50. The unitary group Un(C) is the group of matrices A ∈ GLn(C) satisfying
A∗ = A−1 where A∗ is the conjugate transpose obtained by conjugating the coordinates and
transposing the matrix.

Note that the equations defining it are not polynomial in the complex coordinates, but
they are in the underlying real coordinates. It turns out that Un (and its special part SUn(C)
of determinant 1) are real Lie groups but not complex Lie groups.

Example 2.51. An example of a non-matrix Lie group is an elliptic curve along with its
group law. An example of an elliptic curve is the curve given by y2 = x3 − x + 1 plus the
point at infinity given by (0 : 1 : 0) in projective coordinates (obtained by the homogenized
equation zy2 = x3 − z2x+ z3 in the projective plane).

Given two non-infinity points P and Q on the curve, the line joining them intersects the
curve at a unique third point R (which may be infinity if the line is vertical). In this case
we define P + Q = R. If O is the point at infinity, we define it to be the identity element
by setting O + P = P for all P . This gives an abelian Lie group structure on the projective
curve, and it is not a matrix Lie group because all matrix Lie groups are affine varieties,
and elliptic curves are not.
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2.2.3 Representations of Lie groups

Definition 2.52. A (finite-dimensional) representation of a real or complex Lie group G
is a map of Lie groups G → GL(V ) where V is a finite-dimensional vector space over C or
R respectively. That is, the map is differentiable on the underlying manifold structures, and
is a group homomorphism.

As in the case of representations of finite groups, we may also refer to the representation
as a vector space V rather than the map G→ GL(V ), where the action on V is implied.

Definition 2.53. The character of a representation ρ : G → GL(V ) of a Lie group is the
map χρ : T → C defined by χρ(t) = tr(t). Here T is the maximal torus of G (for instance,
diagonal matrices in the case of GLn).

Characters of representations of Lie groups satisfy the following remarkable properties:

1. A representation of a Lie group is uniquely determined by its character.

2. Characters are additive with respect to direct sum: χV + χW = χV⊕W . Thus, writ-
ing a character in terms of characters of irreducible representations corresponds to
decomposing a representation into irreducibles.

3. Characters are multiplicative with respect to tensor product: χV χW = χV⊗W

As we have seen, many useful maps between matrix groups can be described by polyno-
mial equations in the variables. These give particularly nice representations of Lie groups.

Definition 2.54. A polynomial representation of a matrix Lie group G is a map G →
GL(Cn) (or to GL(Rn)) in which the matrix entries in the image are given by polynomials
in the entries of G.

Example 2.55. As we shall see later, there is one irreducible polynomial representation
of GLn(C) for each partition λ having at most n parts. The remaining (non-polynomial)
irreducible representations are determined by tensoring with a negative power of the de-
terminant representation formed by sending each matrix to the 1 × 1 matrix consisting of
its determinant. Thus understanding the irreducible polynomial representations suffices for
understanding the representation theory of GLn(C).

The polynomial representation V λ of GLn(C) corresponding to the partition λ has char-
acter given by the Schur function sλ(x1, . . . , xn) in n variables, where we think of an element
of the torus as a diagonal matrix with x1, . . . , xn on the diagonals.

It follows that all of the combinatorics of Schur functions that we developed last semester
is precisely what we need to understand the representation theory of GLn(C). We will prove
these assertions in the next section.
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3 Polynomial representations of GLn(C)
We now focus on the construction of polynomial representations of GLn(C), known as Schur
modules. We start by recalling the definition of a Young diagram and tableau, as well as
an exchange.

Definition 3.1. A Young diagram is a left- and bottom-justified stack of unit squares in
the first quadrant. Each Young diagram corresponds to a partition λ = (λ1, . . . , λk) where
λi is the number of boxes in the i-th row from the bottom.

Definition 3.2. A semistandard Young tableau is a way of filling the boxes of a Young
diagram with positive integers such that the numbers in each row weakly increase from left
to right, and the numbers in each column strictly increase from bottom to top. We write
SSYT(λ) for the set of all semistandard Young tableaux of shape λ.

A filling of a Young diagram is simply any way of filling it with positive integers. We
will also sometimes fill it with vectors.

Example 3.3. Below are the Young diagram corresponding to the partition (5, 3, 1, 1), and
a semistandard Young tableau of that shape.

5
3
2 2 3
1 1 1 4 5

Definition 3.4. An exchange in a filling of a Young diagram is the operation of choosing
two columns C1 and C2, taking any m elements of C1 and m elements of C2, and swapping
the two sets of chosen elements, preserving their relative order from bottom to top.

Example 3.5. We can exchange the 2 and 4 at the bottom of the third column with the 3
and 4 in the first column at left to obtain the tableau at right:

3
5 4 1
4 2 4
1 3 2 1

4
5 4 1
2 2 3
1 3 4 1

We now construct some representations of GLn(C) out of Young diagrams of height at
most n. We first require the following algebraic definitions.

In all of the following, set V = Cn.

Definition 3.6. The kth exterior power
∧k V of a vector space V is given by quotienting

V ⊗k by the relations

v1 ⊗ · · · ⊗ vi ⊗ vi+1 ⊗ · · · ⊗ vk = −v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ · · · ⊗ vk

for all i. That is, we impose antisymmetry relations on the variables. We write the equiva-
lence class of v1 ⊗ · · · ⊗ vk as v1 ∧ · · · ∧ vk.
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Note that the antisymmetry means that if the same vector appears twice, such as v∧v∧w,
then the wedge product is 0. In particular, if v1, . . . , vk span a subspace that is less than
k-dimensional then v1 ∧ · · · ∧ vk = 0.

In addition, ΛkV is in general a representation of GL(V ), by having g ∈ GL(V ) act by
g · (v1 ∧ · · · ∧ vk) = (gv1 ∧ · · · ∧ gvk).
Example 3.7. If V is n-dimensional, we have that

∧n V is a one-dimensional vector space
generated by v1 ∧ v2 · · · ∧ vn where v1, . . . , vn is a basis of V , and the induced action of any
matrix M ∈ GL(V ) on

∧n V is given by scalar multiplication by the determinant of M .
Therefore,

∧n V , as a representation of GL(V ), is isomorphic to the determinant repre-
sentation GL(V )→ GL1 that sends a matrix to its determinant.

Example 3.8. For k > dimV we have
∧k V = 0. For k = 1, we have

∧k V = V .

Definition 3.9. The symmetric power SymkV of a vector space V is given by quotienting
V ⊗k by the relations

v1 ⊗ · · · ⊗ vi ⊗ vi+1 ⊗ · · · ⊗ vk = v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ · · · ⊗ vk
for all i. That is, we impose symmetry relations on the variables. We write the equivalence
class of v1 ⊗ · · · ⊗ vk as v1 · · · · · vk.

The symmetric powers also give representations of GL(V ), and there is no limit on the
size of k.

Definition 3.10. For a partition λ = (λ1, . . . , λk) with k ≤ n, and µ = λ′ its transpose
(partition whose parts are the column heights of λ), we write

SλV = ∧µ1V ⊗ ∧µ2V ⊗ · · · ⊗ ∧µkV.
We denote an element v

(1)
1 ∧ · · · ∧ v(1)λ1

⊗ · · · ⊗ v(k)1 ∧ · · · ∧ v(k)λk
by filling the j-th column

of the Young diagram of λ with the v
(j)
i entries from bottom to top.

Example 3.11. In S(2,2,1)V , the element (v ∧ u ∧ w)⊗ (x ∧ y) is denoted as follows:

w
u y
v x .

We finally can define the Schur modules.

Definition 3.12. The Schur module V λ of GL(V ) is defined as

V λ = SλV/Q

where Q is the sub-vector space generated by relations of the form

v =
∑

w

where v ∈ Sλ and the sum ranges over all w ∈ Sλ obtained by exchanges between two fixed
columns and a fixed set of entries in the right hand column (which may be chosen to be
downward-justified).
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Example 3.13. Let us compute the Schur module V (2,1) for V = C2. Let e1, e2 be a basis
for V , and write them as simply 1 and 2 in any corresponding Young tableau. Then a basis
for S(2,1)V consists of the two elements

2
1 1

2
1 2

and these are independent modulo Q.

We will see that the Schur modules are precisely the irreducible polynomial representa-
tions of GL(V ).

Basis elements and polynomial interpretation

Now fix e1, . . . , en to be a basis for V . For a filling T of a Young diagram λ using e1, . . . , en
as entries, define eT to be the corresponding element of SλV .

We often write the entries of T simply by the subscripts rather than the full vector, as
in Example 3.13.

Lemma 3.14. The elements eT , where T ranges over all fillings of λ such that each column
is strictly increasing, form a basis for SλV . Moreover, V λ = SλV/Q where Q is generated
by all the elements of the form eT −

∑
eS where the tableaux S are generated by column

exchanges between two specific columns with chosen boxes in the right hand column.

Proof. Exercise.

Theorem 3.15. The set {eT : T ∈ SSYT(λ)} is a basis for V λ.

The proof and examples will be sketched in class, and will follow that in Fulton’s “Young
tableaux”, chapter 8.

Here, we compute the character of the representation V λ. The torus action, with respect
to the basis {eT}, is as follows: if X is the diagonal matrix with x1, . . . , xn on the diagonal,
then X scales each basis vector ei by xi, and so

X · eT = xm1
1 xm2

2 · · ·xmn
n eT

where mi is the number of times i appears in the tableau T . As we discussed in Math
501/502, the monomial xm1

1 xm2
2 · · ·xmn

n is denoted xT , and the tuple (m1,m2, . . . ,mn) is
called the content of T .

Thus X, thought of as a matrix with respect to the basis {eT}, has diagonal entries equal
to xT for each semistandard Young tableau T , and so its trace is

tr(X) =
∑

T∈SSYT(λ)

xT = sλ(x1, . . . , xn)

as desired.

Theorem 3.16. The Schur modules V λ are precisely the irreducible polynomial representa-
tions of GL(V ).

This will also be sketched in class, but will need Lie algebras for the full classification.
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4 Lie algebras and their representations

Roughly speaking, a Lie algebra captures the “local differential information” at the identity
element of a Lie group.

To motivate Lie algebras, here are some final facts about Lie groups that make the Lie
algebra’s importance clear:

1. Any connected Lie group is generated by any open neighborhood of the identity element
e. In particular, a map of Lie groups is determined by its restriction to a neighborhood
of e.

2. A map of Lie groups G→ H is determined by the induced differential map on tangent
spaces Te(G)→ Te′(H) where e, e′ are the identity elements of G and H respectively.

3. As a consequence to the above, a representation G → GL(V ) of Lie groups is deter-
mined by the map of tangent spaces

Te(G)→ TI(GL(V )).

Because of the last fact, in order to understand representations of Lie groups, understand-
ing their tangent spaces at the identity (especially for GLn) is all we need. This reduces it
to a linear problem which is much easier to understand.

4.1 The epsilon method

How does one compute the tangent space to a Lie group at the identity? We simply enforce
that the elements “very close” to the identity in the tangent space are “in” the Lie group,
as follows.

Definition 4.1. Define the indeterminant ε by the relation ε2 = 0, similar to how we can
define the imaginary number i to satisfy i2 = −1. In other words, we will work over the ring
of coefficients C[ε]/(ε2).

We now define the tangent space formally for matrix Lie groups only.

Definition 4.2. For a matrix Lie group G ⊆ GLn(C) defined by polynomial equations
f1, . . . , fm = 0, the tangent space TI(G) at the identity matrix I is the set of matrices X
such that

I + εX

satisfies the equations f1, . . . , fm over the extended coefficient ring C[ε]/(ε2).

Example 4.3. The tangent space TI(SLn(C)) is the set {X : det(I + εX) = 1}. An explicit
computation using the definition of ε shows that det(I+εX) = 1+εtrX, and so the condition
is equivalent to trX = 0. Thus sln(C) := TI(SLn(C)) = {X : trX = 0}.

Example 4.4. A similar analysis to the above shows that the Lie algebra corresponding to
GLn(C), denoted gln(C), is simply the set of all n× n matrices (with no restrictions).
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Now, notice that sln(C) is not closed under matrix multiplication. In general Lie algebras
do not have a well-defined product. Indeed, we can see that under the epsilon method,
multiplication in the Lie group turns into addition in the Lie algebra:

(I + εX)(I + εY ) = I + ε(X + Y ).

However, we do have a well-defined commutator. Indeed, if we consider the Lie group
commutator ghg−1h−1, we can derive an analogous operation on the Lie algebra by using the
epsilon method on both g and h separately using two independent commuting indeterminants
ε and σ, both of which square to 0, as follows.

(I + εX)(I + σY )(I + εX)−1(I + εY )−1 = (I + εX)(I + σY )(I − εX)(I − εY )

= (I + εX + σY + εσXY )(I − εX − σY + εσXY )

= I − εσXY − εσY X + εσXY + εσXY

= I + εσ(XY − Y X)

= I + εσ[X, Y ]

where [X, Y ] = XY − Y X.

Exercise 4.5. Show that [X, Y ] = XY − Y X is a well-defined bracket on sln(C), that is,
that tr(XY − Y X) = 0 for any matrices X, Y ∈ sln(C).

We now have finally motivated the abstract definition of a Lie algebra.

Definition 4.6. A Lie algebra is a vector space g along with a bilinear Lie bracket
[, ] : g× g→ g satisfying:

1. Skew-symmetry: [X, Y ] = −[Y,X]

2. Jacobi identity: [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

It is not hard to verify that the commutator [X, Y ] = XY − Y X satisfies the above two
identities.

Here is the main theorem on the relationship between Lie groups and Lie algebras that
completes our story.

Theorem 4.7. A vector space g with a Lie bracket [, ] is a tangent space Te(G) of some Lie
group G if and only if it is a Lie algebra. Moreover, the connected component of e of G is
uniquely determined by g.

In other words, there is a one-to-one correspondence between Lie algebras and
connected Lie groups.

For the finite dimensional setting, a remarkable theorem shows that in fact we can always
assume that the Lie bracket [, ] is ordinary commutator of matrices.

Theorem 4.8. (Ado’s Theorem). Every finite-dimensional Lie algebra is isomorphic to a
matrix Lie algebra with the commutator bracket.
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A map of Lie algebras is a map f : g→ h that is compatible with their Lie brackets:

[fX, fY ] = [X, Y ].

Using this definition we can define a representation of a Lie algebra.

Definition 4.9. A representation of a Lie algebra is a map ρ : g 7→ gln(C) of Lie algebras.

Remark 4.10. Similar to the case of representations of groups, we can also think of Lie
algebra representations as a vector space V along with an action g× V → V such that

• The action map is bilinear:

(X + Y ) · v = X · v + Y · v, X · (v + w) = X · v +X · w

• The Lie bracket acts as a commutator:

[X, Y ] · v = X · (Y · v)− Y · (X · v).

Finally, we say that V is a g-module if it comes with a Lie algebra action satisfying the
above conditions.

4.2 Representation theory of sl2

Recall that sl2(C) is the Lie algebra of 2×2 complex matrices with trace 0. We now analyze
its representations.

We first note that a vector space basis for sl2 consists of

E =

(
0 1
0 0

)
F =

(
0 0
1 0

)
H =

(
1 0
0 −1

)
Recall that a representation of sl2 is a map to gln that preserves the Lie bracket. We

therefore start by observing the Lie bracket products of these three generators:

• [E,E] = [F, F ] = [H,H] = 0

• [E,F ] = H

• [H,E] = 2E

• [H,F ] = −2F

Now, consider a representation φ : sl2 → gl(V ) and let h = φ(H). We will use the
following fact without proof - for a reference, see Fulton’s Representation Theory, Appendix
C:

Theorem 4.11. The element h acts “diagonalizably” on V , that is,

V = ⊕αVα
where Vα = {hv = αv} for each constant α, and each Vα is one-dimensional.
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With this theorem in mind, we make the following definition.

Definition 4.12. A one-dimensional space Vα in the above decomposition is called a weight
space for H, and vα is called a weight vector of weight α.

We now show that the operators E and F act as “raising” and “lowering” operators
between the weight spaces, in the following sense. We write vα for an eigenvector of H for
the weight space Vα.

Lemma 4.13. If Hvα = αvα and E · vα 6= 0, then

H(E · vα) = (α + 2)E · vα.

Similarly if F · vα 6= 0, then
H(F · vα) = (α− 2)F · vα.

That is, the operators E and F raise and lower the eigenvalue by 2 respectively.

Proof. We have HE · vα = [H,E]vα +EH · vα = 2E · vα +αEvα and the result follows. The
computation for F is similar.

Corollary 4.14. A finite dimensional representation of sl2 looks like a disjoint union of
finite chains of weight spaces, connected by E and F operators.

We now show that the weights are actually symmetrically balanced and integral.

Theorem 4.15. Let Vα⊕ Vα−2⊕ · · · ⊕ Vα−2n be an irreducible sl2 representation. Then α is
a nonnegative integer and α− 2n = −α, that is, α = n.

Proof. Let vα ∈ Vα. Then we have F n+1vα = 0 and F nvα ∈ Vα−2n is nonzero. Therefore we
have

0 = E(F n+1vα)

= EF (F nvα)

= ([E,F ] + FE)(F nvα)

= (H + FE)(F nvα)

= (α− 2n)F nvα + F (EF )F n−1vα

= (α− 2n)F nvα + (α− 2n− 2)F nvα + F 2(EF )F n−2vα

and so on. Continuing this process, we find that

0 = ((α− 2n) + (α− (2n− 2)) + · · ·+ (α))F nvα

and so (n+ 1)α− 2n(n+ 1)/2 = 0. Hence α = n.

Corollary 4.16. There is one irreducible representation of sl2 for each nonnegative integer
n. We call this representation V n.
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4.3 Tensor products of sl2 representations

We first use the ε method to deduce how a Lie algebra acts on a tensor product of two of
its representations. Indeed, for a Lie group G and two G-representations V,W , we have a
representation V ⊗W with action given by g(v ⊗ w) = (gv)⊗ (gw).

For its associated Lie algebra, a general element is X such that I+εX ∈ G over C[ε]/(ε2).
Then the tensor product action above translates to

(I + εX)(v ⊗ w) = (v + εXv)⊗ (w + εXw)

= v ⊗ w + ε((Xv)⊗ w + v ⊗ (Xw)) + ε2(Xv)⊗ (Xw)

= v ⊗ w + ε((Xv)⊗ w + v ⊗ (Xw))

Taking the coefficient of ε, we see that the Lie algebra action of g on V ⊗W is given by

X · (v ⊗ w) = ((Xv)⊗ w) + (v ⊗ (Xw)).

Example 4.17. We can use this rule to compute V ⊗W where V = V1 ⊕ V−1 and W =
W1 ⊕W−1 are two copies of the two-dimensional irreducible representation of sl2. We have

V ⊗W = (V1 ⊗W1)⊕ (V1 ⊗W−1)⊕ (V−1 ⊗W1)⊕ (V−1 ⊗W−1)

and notice that V1 ⊗ V1 is a weight space of weight 2 because

H(v1 ⊗ v1) = (Hv1 ⊗ v1) + (v1 ⊗Hv1) = 2v1 ⊗ v1.

Similarly
(V1 ⊗ V−1)⊕ (V−1 ⊗ V1)

is weight 0, and (V−1 ⊗ V−1) is weight −2.
Let us now analyze how F acts on a highest weight vector v1⊗w1 (which is clearly killed

by E). Let v2, w2 be equal to Fv1, Fw1 respectively.
We have F (v1 ⊗ w1) = v1 ⊗ w2 + v2 ⊗ w1, and applying F again to this vector yields

2v2 ⊗ w2, which is lowest weight (killed by F ). Thus we have an sl2 chain of length 3,
being a copy of the irreducible representation of highest weight 2. The remaining irreducible
representation is generated by (v2 ⊗ w1)− (v1 ⊗ w2), which has weight 0 and is killed by E
and F . Thus the tensor product decomposes as the direct sum of two irreducibles, of highest
weights 2 and 0.

It is cumbersome in general to find explicit decompositions for tensor products as in the
above example, so we rely on formal characters. In the definition below, we use the notation
V = ⊕nV [n] to denote the decomposition of V into weight spaces, where V [n] = {v : Hv =
nv}.

Definition 4.18. The formal character χV (q) of an sl2 representation V = ⊕nV [n] is the
generating function ∑

n

dim(V [n])qn.

Example 4.19. We have χV n(q) = q−n + q−(n−2) + · · ·+ qn−4 + qn−2 + qn.
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Proposition 4.20. We have that, for a representation V of sl2,

• χV determines the representation V ,

• χV⊕W (q) = χV (q) + χW (q), and

• χV⊗W = χV (q)χW (q).

Proof. Shown in class.

Theorem 4.21 (Clebsch-Gordan Rule). If n ≥ m, we have V n ⊗ V m = V n+m ⊕ V n+m−2 ⊕
V n+m−4 ⊕ · · · ⊕ V n−m.

Proof. We analyze the characters of both sides and show they match, which is enough by
the above proposition. On the left hand side the character is

(q−n + q−(n−2) + · · ·+ qn)(q−m + q−(m−2) + · · ·+ qm)

and the coefficient of qn+m−2k, for k ≤ m, is then equal to k + 1 because we can pair n− 2k
and m, or n − 2k + 2 and m − 2, and so on up to n and m − 2k. The number of copies of
V [n+m− 2k] on the right is also k + 1 for these values of k. A similar analysis comparing
all other pairs of coefficients shows that the characters match.

A more visual way of representing the Clebsch-Gordan rule is with the following diagram:

⊗

In general we have:

Theorem 4.22. Every irreducible representation V n of sl2 appears in some V 1⊗V 1⊗· · ·⊗V 1.
In fact V n appears as a factor in the decomposition of (V 1)⊗n into irreducibles.

We will discuss in class how to inductively show a crystal rule for computing in (V 1)⊗n

starting from the visual Clebsch-Gordan rule.

5 Adjoint representations

Definition 5.1. The adjoint representation of a Lie algebra g is the left action of g on
itself by the Lie bracket. More precisely, it is the map

g→ gl(g)

X 7→ (Y 7→ [X, Y ]).
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As a shorthand, we sometimes write the above map as:

g→ gl(g)

X 7→ [X,−]

We write ad(X) for the operator of left bracketing by X.

5.1 Adjoint representation of sl2

We note that sl2 is a 3-dimensional vector space generated by E,F,H, and so the adjoint
representation is 3 dimensional. Using the commutator brackets, if E,F,H are our basis
elements in order (represented by the elementary column vectors, here E = (1, 0, 0)T , F =
(0, 1, 0)T , H = (0, 0, 1)T ), we see that the adjoint representation is given by

E 7→

0 0 −2
0 0 0
0 1 0

 F 7→

 0 0 0
0 0 2
−1 0 0

 H 7→

2 0 0
0 −2 0
0 0 0


Indeed, we have that in this representation, H acts on E,H, F respectively by scaling

them by 2, 0,−2. Moreover, F acting on E is [F,E] = −H, and F acting onH is [F,H] = 2F ,
and so the weight spaces are sp(E), sp(H), sp(F ) that are lowered to one another by F . Hence
the adjoint rep of sl2 is isomorphic to V 2.

5.2 Adjoint rep of sl3

For sl3, we discussed in class that

{Eij|i 6= j} ∪ {H12, H13}

forms a basis of sl3, where Eij is the matrix with a 1 in row i, column j and zero elsewhere,
and Hij has a 1 in position (i, i) and −1 in position (j, j).

Thus sl3 has dimension 8, and so the adjoint representation is 8 dimensional. In partic-

ular, an arbitrary diagonal element H =

x1 0 0
0 x2 0
0 0 x3

 ∈ h of the Cartan subalgebra acts

by [H,Eij] = (xi − xj)Eij. Thus in the adjoint representation, H maps to the 8× 8 matrix

x1 − x2 0 0 0 0 0 0 0
0 x1 − x3 0 0 0 0 0 0
0 0 x2 − x3 0 0 0 0 0
0 0 0 x2 − x1 0 0 0 0
0 0 0 0 x3 − x2 0 0 0
0 0 0 0 0 x3 − x1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.
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6 Representation theory of sl3 and general Lie algebras

Definition 6.1. A Cartan subalgebra of a Lie algebra g is a maximal abelian subalgebra
that acts diagonalizably in the adjoint representation.

Example 6.2. In sln, the Cartan h is the subspace of all diagonal matrices (with trace 0).

Definition 6.3. A joint eigenvalue or weight of a g-representation V is an element α ∈ h∗

(that is, α : h→ C linearly) such that there is a vector vα ∈ V for which, for all H ∈ h,

Hvα = α(H)vα

Definition 6.4. The roots of a Lie algebra g are the weights of its adjoint representation.

Definition 6.5. We note that for sl3, the dual cartan h∗ is spanned by L1, L2, L3 where

L1

x1 0 0
0 x2 0
0 0 x3

 = x1 L2

x1 0 0
0 x2 0
0 0 x3

 = x2 L3

x1 0 0
0 x2 0
0 0 x3

 = x3

Note they satisfy the relation L1 + L2 + L3 = 0 and h∗ is two dimensional.

We can draw L1, L2, L3 as corresponding to the third roots of unity in the complex plane
and consider the weight lattice spanned by them. We showed in class that all weights lie
on the weight lattice for sl3, and we are using the fact that every irreducible representation
has a unique highest weight vector, that is killed by E12 and E23.

Definition 6.6. The irreducible representation V (a,b) of sl3 denotes the representation whose
highest weight vector has weight aL1 + bL2.

Theorem 6.7. Every irreducible representation of sl3 is contained in some tensor product
(V (1,0))⊗n.

We draw V (1,0) as
1

F12−−→ 2
F23−−→ 3

and the tensor products can be described using the L rule on each sl2 copy separately; this
gives the bracketing rule on words of 1’s, 2’s, and 3’s for creating word and tableau crystals
for sl3 representations.
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