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1 Introduction

There is a growing body of knowledge that may be considered to be “classical” combina-
torics. This involves permutations and combinations, bijections, recurrence and generating
functions, graph theory, algorithms, and set systems such as matroids and combinatorial
designs.

These basic combinatorial objects and tools have now been established as being useful
throughout mathematics and the sciences. However, many of these objects were not always
so ‘established’. The theory of combinatorial designs, for instance, was considered to be
a purely recreational form of mathematics stemming from Latin squares and other riddles,
until it rose to prominence in the 1900’s as its applications to agricultural science experiments
became apparent. At that point the study of designs exploded and became a mainstream
area of combinatorics.

This leads to an interesting philosophical question: how do we know when a combina-
torics problem is ‘important’ to investigate? On the one hand, it is important to take fun
problems about Latin squares and extend them for the sake of building fun combinatorial
theory; indeed, down the road an important application might arise. On the other hand, it is
important to look at problems from other fields of mathematics or science with a combinato-
rial mindset, to figure out what the current important problems are and what combinatorial
tools need to be developed in order to solve them.

To summarize, there are two types of ‘importance’ that may apply to a combinatorial
problem or theory:

1. It is a natural extension of previously solved problems in an established area of com-
binatorics.

2. It arises from an important question in a different area of math or science.

In fact, these two types are closely intertwined, and pursuing both are necessary to make
new discoveries. Graph theory, for instance, may have arisen first in studies of maps, in
which roads and bridges connect various towns or landmarks (type 2 above). Later, Euler
and others studied the resulting natural questions about graph theory in a theoretical manner
(type 1). This theory was discovered to have applications to countless other fields of study,
such as computer science, social networks, neuroscience, and more (type 2). These then lead
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to more natural theoretical questions about graphs (type 1), and the theory becomes even
stronger for any future applications that may arise.

As this is a second year graduate course in combinatorics, the goal of this class is to
demonstrate how one modern area of combinatorics rose to prominence due to having type
2 importance. Specifically, we will focus on the area of algebraic combinatorics that is
sometimes called combinatorial representation theory, as it first arose from important
questions in representation theory and particle physics.

The combinatorial tools that arose in this field - namely, Young tableaux, symmetric
functions, crystals, and reflection groups - have since proven extremely useful to many other
areas of study, including intersection theory in algebraic geometry, polytope theory, and
probabilistic systems such as particle exclusion processes. Combinatorial representation
theory is therefore currently rising to greater prominence in mathematics, and perhaps will
itself eventually be considered to be part of “classical” combinatorics.

In order to introduce this rich area of combinatorics, we will first focus on some represen-
tation theoretic background from a high level view, and then build the combinatorial tools
needed to work with representations in a discrete manner.

2 A brief introduction to representation theory

We start with a brief overview and motivation of representation theory. It will be example-
heavy and many proofs will be omitted, since the focus of this class will be on the relevant
combinatorics.

We will primarily be studying representations of three objects: groups, Lie groups, and
Lie algebras. We start with groups, since they are the most well-known and the simplest to
define.

2.1 Representations of groups

A group is a set G along with an identity element e ∈ G and a multiplication ∗ : G×G→ G
satisfying:

• Associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c) for any a, b, c ∈ G

• Identity: e ∗ a = a ∗ e = a for any a ∈ G

• Inverses: For any a ∈ G, there exists a unique b ∈ G such that a ∗ b = b ∗ a = e.

We often write the multiplication as concatenation, for instance writing ab instead of a ∗ b,
as a shorthand.

Abstract groups can be difficult to get an intuitive grasp on or work with directly. For
instance, here are two different group structures on the set {e, a, b, c}, written out as full
multiplication tables.
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G:

e a b c
e e a b c
a a e c b
b b c e a
c c b a e

H:

e a b c
e e a b c
a a b c e
b b c e a
c c e a b

There are more useful ways of representing the elements of these groups that allow
us to get a better handle on them. One might notice that the first group, G, is a copy of
C2×C2, whereas the second, H, is C4. We can therefore represent them as symmetry groups
of diagrams in the plane.

Indeed, C2 ×C2 is the symmetry group of a non-circular ellipse, or in general any shape
that is fixed by both a horizontal and vertical reflection but not by any other reflection or
rotation (other than rotation by 180 degrees, which is the composition of the two reflections).
So for instance we can think of C2 × C2 as the symmetry group of the set of four points
{(2, 0), (−2, 0), (0, 1), (0,−1)}. If we label them as in Figure 1 at left, then we can represent
the group elements as the permutations

e = id, a = (13), b = (24), c = (13)(24).

This is called a permutation representation of the group G.

2.1.1 Examples of representations

We can alternatively think of the reflections as transformations of the plane, leading to a
matrix representation.

Example 2.1. Since a is the vertical reflection, it may be represented as the matrix

(
−1 0
0 1

)
,

which sends a point (x, y) (written as a column vector) to its reflection (−x, y) about the
y-axis. Similarly we have

e =

(
1 0
0 1

)
, a =

(
−1 0
0 1

)
, b =

(
1 0
0 −1

)
, c =

(
−1 0
0 −1

)
.

Multiplying two of these matrices corresponds to composing the transformations, so we have
represented the group elements as matrices in a way that matrix multiplication captures the
structure of the group.

1

2

3

4

Figure 1: Diagrams having symmetry groups G and H respectively.
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Example 2.2. In the case of the cyclic group H, the rotation matrices by 0◦, 90◦, 180◦, 270◦

respectively are (
1 0
0 1

)
,

(
0 −1
1 0

)
,

(
−1 0
0 −1

)
,

(
0 1
−1 0

)
.

Notice that this representation is a little more cumbersome to work with than the previous
example, because the matrices are not all diagonal. In general we want to find representations
that are “as diagonal as possible”. Indeed, if there is some matrix representation in which
every group element is represented by a “block diagonal” matrix of the form

A1

A2

Ak

. . .

0

0

where A1, A2, . . . , Ak are square matrices of fixed sizes λ1, λ2, . . . , λk, then multiplying two
such matrices simply boils down to multiplying each of the block components together. In
fact, each such block gives rise to a smaller matrix representation of the group consisting of
λi × λi submatrices of the original matrices. For instance, the two sub-representations that
arise from Example 2.1 are

e→ (1), a→ (−1), b→ (1), c→ (−1)

and
e→ (1), a→ (1), b→ (−1), c→ (−1).

Some elements are represented by the same matrix, but they are still representations because
every element is represented by a matrix and multiplication of matrices corresponds to the
group multiplication. Representations in which each element corresponds to a different
matrix are called faithful. The two examples above are not faithful representations.

Let us now look back at Example 2.2. Is there some change of coordinates we can
perform so that all the matrices are diagonal? In other words, are they simultaneously
diagonalizable, meaning that there exists a single matrix P such that for all elements M
of our set of matrices, PMP−1 is diagonal? Here’s where the following theorem comes in
handy.

Theorem 2.3. A set of matrices is simultaneously diagonalizable if and only if they are each
diagonalizable and all commute with each other.

In this case, since we are representing abelian groups, the matrices must all commute,
so if they are diagonalizable then they are simultaneously diagonalizable. And to check if a
matrix is diagonalizable, one needs to see if it has an orthogonal set of eigenvectors.
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Alas, over R, the rotation matrices have no eigenvectors. But over C, it is a different
story!

Indeed, interpreting it as a complex matrix representation, we have that all four matrices
have the common eigenvectors (1, i) and (i, 1). With respect to this basis, the four matrices
e, a, b, c act as the diagonal matrices(

1 0
0 1

)
,

(
i 0
0 −i

)
,

(
−1 0
0 −1

)
,

(
−i 0
0 i

)
,

and indeed we have a “more diagonal” representation.

2.1.2 Formal definitions

We now define representations of groups in three different ways. As we saw above, the
characteristics of a representation depend on what field you are working over (say R vs C)
and so we define them for a fixed arbitrary field F. Throughout the course, if F is unspecified,
we may assume that it is C.

Definition 2.4 (Definition 1). A representation of a group G over a field F is a homo-
morphism

ρ : G→ GLn(F)

where GLn(F) is the group of invertible n× n matrices over F.

Definition 2.5 (Definition 2). A representation of a group G over a field F is an F-vector
space V along with an action G y V by linear transformations, i.e. a homomorphism
ρ : G→ GL(V ).

Definition 2.6 (Definition 3). A representation of a group G over a field F is an FG-
module V . (Here FG is the group ring consisting of formal linear combinations of elements
of G over F. A module is essentially a “vector space over a ring”.)

Exercise 2.7. (Essential!) Prove that all three definitions are equivalent.

Exercise 2.8. For the examples of the groups G and H from Examples 2.1 and 2.2, express
these representations as a vector space with an action, and as a module.

With these definitions, we can then express the notions of diagonalizability and block
form more cleanly in terms of direct sums and irreducible representations.

Definition 2.9. The direct sum of two representations V and W of a group G (thought of
as vector spaces with an action of G) is the space V ⊕W along with the action Gy V ⊕W
by g · (v, w) = (g · v, g · w).

Exercise 2.10. Show that if all the matrices in a matrix representation of a group can be
conjugated by the same change of basis matrix to be written in block form
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A1

A2

Ak

. . .

0

0

where A1, A2, . . . , Ak are square matrices of fixed sizes λ1, λ2, . . . , λk, then the entire repre-
sentation can be written as a direct sum of k smaller matrix representations corresponding
to the k blocks.

In a direct sum V⊕W , both V andW areG-invariant subspaces or sub-representations
of V ⊕W . In general, any subspace of a representation V (thought of as a vector space)
that is fixed by the action of G is called a sub-representation of the action of G on V .

Definition 2.11. A representation is irreducible if it has no proper sub-representations.

Note a representation V being irreducible is not in general equivalent to being inde-
composable, meaning that it cannot be written as a direct sum of two nonzero sub-
representations.

Exercise 2.12. Consider the representation of the group

B = {upper triangular matrices in GL2(C)}

given by its defining action on C2, that is, every matrix is represented by itself. Show that
it has a one-dimensional sub-representation, but that it does not decompose as a direct sum
of irreducibles.

However, the notions of irreducibility and indecomposability are equivalent for finite
groups (and for simple Lie groups and semisimple Lie algebras, as we will see later.)

Theorem 2.13. For a finite group G, a representation V of G is irreducible if and only if
it is indecomposable.

Exercise 2.14. Consider the matrix representation of S3 as the symmetry group of the
triangle with coordinates (1, 0), (−1/2,

√
3/2), (−1/2,−

√
3/2) in the plane. Show that this

is an irreducible 2-dimensional representation, even over C.

Maschke’s theorem says further that (for finite groups G) if V has a sub-representation
W , then V = W ⊕ U for some U .

Corollary 2.15. Let V be a representation of a finite group G. Then V can be decomposed
as a direct sum of irreducible representations.
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In fact, this decomposition is unique (up to isomorphisms of the irreducible representa-
tions). This can be proven using Schur’s Lemma, which is a statement about homomor-
phisms of representations. A homomorphism f : V → W is simply a homomorphism as
FG-modules. Schur’s lemma can be stated as follows.

Lemma 2.16. If V and W are irreducible representations of G and f : V → W is a
homomorphism, then f is either the 0 map or an isomorphism.

Exercise 2.17. Consider the representation of S3 in which each permutation π ∈ S3 is sent

to its corresponding permutation matrix P , in which Pi,j =

{
1 j = π(i)

0 j 6= π(i)
.

1. Find a common eigenvector of all of the permutation matrices.

2. Write the representation as a direct sum of irreducible representations.

2.1.3 Tensor products and characters

In addition to direct sum, the tensor product is another fundamental operation on repre-
sentations.

Definition 2.18. Given vector spaces V and W over a field F, the tensor product of V
and W is the vector space V ⊗W defined by

V ⊗W = F〈v ⊗ w : v ∈ V,w ∈ W 〉/Q

where Q is the sub-vector space generated by all relations of the form

(av1 + bv2)⊗ (cw1 + dw2)− ac(v1 ⊗ w1)− ad(v1 ⊗ w2)− bc(v2 ⊗ w1)− bd(v2 ⊗ w2)

where a, b, c, d ∈ F and v1, v2 ∈ V,w1, w2 ∈ W . (Note that F〈v ⊗ w : v ∈ V,w ∈ W 〉 denotes
the vector space of all formal linear combinations of the symbols v ⊗ w where v and w are
any vectors in v and w).

Exercise 2.19. Prove that, if v1, . . . , vn form a basis for V and w1, . . . , wm form a basis for
W , then {vi ⊗wj : i ≤ n, j ≤ m} forms a basis for V ⊗W , and therefore dimV ⊗W = nm.

We can now use this definition to define the tensor product of two representations.

Definition 2.20. If V and W are representations of the group G, then V ⊗W along with
the “diagonal action” of G given by g(v ⊗w) = (gv ⊗ gw) is the tensor product of V and
W .

In matrix terms, suppose A is an m × m matrix and B is an n × n matrix. Then the
tensor product of the matrices A and B is the matrix having block form

a11B a12B · · · a1mB
a21B a22B · · · a2mB
...

...
am1B am2B · · · ammB
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Exercise 2.21. Show that, if ρ : G→ GL(Cm) and σ : G→ GL(Cn) are two representations
of G (thought of as collections of matrices ρ(g) and σ(g)), then the tensor product of these
two representations is the map

ρ⊗ σ : GL(Cmn)

given by
ρ⊗ σ(g) = ρ(g)⊗ σ(g).

Exercise 2.22. (Trivial representation acts as multiplicative identity) Let V0 = C be the
trivial representation of the group G, in which every element of G acts as the identity (of
size 1). Show that, for any representation W of G, we have V0 ⊗W ∼= W .

Exercise 2.23. Show that tensor product distributes over direct sum:

V ⊗ (W ⊕ U) = (V ⊗W )⊕ (V ⊗ U)

and that tensor product is symmetric:

V ⊗W ∼= W ⊗ V.

Tensor products and direct sums both play nicely with characters, defined as follows.

Definition 2.24. The character of a representation ρ : G→ GL(V ) is the map χV : G→ C
defined by χV (g) = tr(ρ(g)).

We will learn much more about characters later in the course, but for now the essential
facts are as follows.

Theorem 2.25. The character of a representation uniquely determines the representation.
Moreover, characters are additive on direct sums and multiplicative on tensor products.

2.2 Lie groups

Now that we have defined the basic concepts of representation theory in the context of
finite groups, we turn to Lie groups and Lie algebras, for which the story is somewhat more
complicated but very analogous.

Definition 2.26. A (real or complex) Lie group is a real smooth manifold G (over R or C
respectively) along with a group structure whose group multiplication

G×G→ G

and inverse map G→ G are differentiable. Equivalently, we must have that the map

G×G→ G(x, y) 7→ xy−1

is differentiable.
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We will not recall the precise definition of manifold here, but it will not be necessary for
moving forward in combinatorial representation theory. Roughly speaking, a manifold is a
topological space that is locally Euclidean; around each point there is an open set isomorphic
to Rn (or Cn) for some fixed n. In this case it is called an n-dimensional real (or complex)
manifold.

Remark 2.27. Those with a more geometric mindset might visualize a smooth n-dimensional
real variety instead, and indeed, the representation theory of Lie groups is nearly identical
to that of algebraic groups, which are algebraic varieties along with a group structure whose
multiplication and inverse maps are regular maps. All of the examples of Lie groups that we
will be considering throughout the class will also be algebraic groups.

We now present many examples of Lie groups and methods of constructing new Lie
groups from old.

2.2.1 First examples

Example 2.28. The space Rn is an n-dimensional real Lie group under vector addition.
Likewise, Cn is an n-dimensional complex Lie group, and a 2n-dimensional real Lie group.

Example 2.29. The space R− {0} is a 1-dimensional real Lie group under multiplication,
and C∗ = C− {0} is a complex Lie group under multiplication.

Example 2.30. The groups GLn(R) and GLn(C) under matrix multiplication are real and
complex Lie groups respectively, of dimension n2. Topologically, GLn (over either R or C)
can be realized as the subspace of the space of n × n matrices Mn (under the Euclidean
metric using the entries of the matrices as coordinates) that avoids the hypersurface defined
by the equation det(A) = 0.

The example of GLn above is crucial, as many more Lie groups can be constructed as
closed subgroups of GLn. Such a Lie group is called a matrix Lie group. In particular,
the following fact will allow us to easily define most matrix Lie groups:

Proposition 2.31. Any closed subgroup of a Lie group is a Lie group.

Since the topological structure is sometimes hard to get a handle on, it is often useful to
use the above proposition along with the following fact about closed subvarieties of algebraic
groups such as GLn.

Proposition 2.32. Let G be a matrix Lie group. If H ⊂ G is the solution set in G to a
system of finitely many polynomial equations in the entries of the matrices in G, then H is
closed in G.

In fact, the above proposition is true for any algebraic variety, but here we will only use
it for matrix Lie groups.

Let us now use Propositions 2.31 and 2.32 to construct many more examples of matrix
Lie groups.
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Example 2.33. Define Tn to be the subgroup of diagonal invertible matrices in GLn (over
either R or C). Then Tn is a closed subgroup since it is defined by setting all of the off-
diagonal entries to 0, all of which are polynomial equations (of degree 1). Thus Tn is a Lie
group.

The Lie group Tn is called the maximal torus in GLn, due to the fact that T2(C∗)2,
which is topologically a torus, and no larger torus is a subgroup of GLn.

In general, given a Lie group G, its maximal torus is defined as the maximal compact,
connected, abelian subgroup T of G.

Example 2.34. Define Bn to be the subgroup of upper-triangular matrices in GLn. Then Bn

is a closed subgroup since it is defined by setting all of the entries strictly below the diagonal
to 0, and multiplying two upper-triangular matrices yields another upper-triangular matrix.

The Lie group Bn is called the (canonical) Borel subgroup in GLn. In general a Borel
subgroup of a matrix Lie group G is a maximal connected solvable subgroup. It is known
that all Borel subgroups of G are conjugate to one another, so in particular they can be
obtained by conjugating the subgroup Bn of upper triangular matrices by some change of
basis matrix.

The Borel in GLn can also be thought of as the stabilizer of the complete flag 0 ⊆ 〈e1〉 ⊆
〈e1, e2〉 ⊆ · · · 〈e1, e2, . . . , en〉 = Fn where F is either R or C and where ei is the i-th standard
basis vector. In general any Borel in GLn is the stabilizer of a complete flag.

Example 2.35. A parabolic subgroup is a proper subgroup containing the Borel. In
GLn, the parabolic subgroups are the stabilizers of partial flags. The stabilizer of the flag
0 = V0 ⊆ Vλ1 ⊆ Vλ1+λ2 ⊆ · · · ⊆ Vλ1+···+λk = Fn is the set of all block upper triangular
matrices of the form

A1

A2

Ak

. . .

0

∗

where A1, . . . , Ak are invertible square matrices of sizes λ1, λ2, . . . , λk. For a partition λ, this
is called the parabolic subgroup Pλ.

Exercise 2.36. Compute the dimension of the parabolic subgroup Pλ over its field of coef-
ficients.

Example 2.37. The subgroup of the Borel Bn in which all of the diagonal entries are 1 is
called the unipotent subgroup Nn. The unipotent parabolic Nλ is the subgroup of Pλ
in which the diagonal block matrices Ai are the identity matrix of size λi for all i.

Exercise 2.38. Compute the dimension of the unipotent parabolic Nλ over its coefficient
field.
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2.2.2 The classical groups

Example 2.39. The groups SLn(R) and SLn(C), known as the special linear groups, are
the subgroups of GLn(R) or GLn(C) respectively consisting of matrices A with det(A) = 1.
Since det(A) is a polynomial in the matrix entries, we know it SLn a closed subgroup and
therefore is a Lie group.

The special linear group can also be thought as the group of volume-preserving linear
transformations.

The next two examples are defined as subgroups of GLn that fix a certain bilinear form.

Example 2.40. The special orthogonal group SOn(R) is the group of matrices of de-
terminant 1 that preserve a fixed symmetric, positive definite bilinear form 〈, 〉 on Rn. Over
C, the special orthogonal group SOn(C) is the stabilizer of a fixed nondegenerate symmetric
bilinar form.

The canonical example of such a bilinear form (in both cases of R and C) is the “dot
product” in which

〈v, w〉 = v1w1 + v2w2 + · · ·+ vnwn = vTw,

and any other symmetric, positive definite bilinear form yields a symmetry group that is
conjugate to the copy of SOn coming from the canonical choice.

The condition that a matrix A preserves the form is equivalent to saying that 〈Av,Aw〉 =
〈v, w〉 for all v, w. But then 〈Av,Aw〉 = (Av)T (Aw) = vTATAw, and this equals vTw for
all v and w, so the condition is equivalent to ATA = I, or A−1 = AT . This, along with the
condition det(A) = 1, gives a set of polynomials that define the special orthogonal group as
a closed subgroup of GLn.

Geometrically, the group SOn(R) can also be thought of as the group of rotations of Rn.

Exercise 2.41. If we relax the restriction detA = 1 in the above example we get the
orthogonal groups On. Show that On(R) is disconnected.

Exercise 2.42. Show that SO2(R) is topologically a circle, and SO2(C) is the torus C∗.

Example 2.43. The symplectic groups Sp2n(R) and Sp2n(C) are the stabilizers of any
fixed symplectic form on R2n or C2n respectively. A nondegenerate bilinear form 〈, 〉 is
symplectic if it satisfies skew-symmetry :

〈v, w〉 = −〈w, v〉

for all w, v.

Exercise 2.44. Show that the skew-symmetry property is equivalent to the condition that
〈v, v〉 = 0 for all v.

Exercise 2.45. Show that if Rm or Cm has a symplectic form then m must be even. (Hint:
the nondegenerate condition must be used.)
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The canonical example of a symplectic form is 〈v, w〉 = vTΩw where

Ω =



1
1

1
1

−1
−1

−1
−1


(here the example is just shown for n = 4, but in general it is a block matrix where the lower
left block is a reverse diagonal matrix of all −1’s and the upper right is reverse diagonal with
1’s, and the rest 0’s).

Exercise 2.46. Show that the condition on a matrix M being in Sp2n is that MTΩM = Ω.

Remark 2.47. The symplectic group arises naturally in quantum mechanics. Suppose a
system of n quantum particles have positions x1, . . . , xn and momentum values p1, . . . , pn
respectively. Think of these values as defining a point (x1, . . . , xn, p1, . . . , pn) in phase space.
Define the operator qi to be the operator that returns the value of the i-th coordinate in this
phase space, so it would return xi if i ≤ n and pi−n if i > n. Then the commutators of these
operators satisfy (up to appropriate scalars)

qiqj − qjqi = [qi, qj] = Ωij

where Ω is the matrix defined above. This is a mathematical encoding of Heisenberg’s
uncertainty principle, which states that a particle’s position and momentum can never be
simultaneously known.

Example 2.48. The unitary group Un(C) is the group of matrices A ∈ GLn(C) satisfying
A∗ = A−1 where A∗ is the conjugate transpose obtained by conjugating the coordinates and
transposing the matrix.

Note that the equations defining it are not polynomial in the complex coordinates, but
they are in the underlying real coordinates. It turns out that Un (and its special part n(C)
of determinant 1) are real Lie groups but not complex Lie groups.

Example 2.49. An example of a non-matrix Lie group is an elliptic curve along with its
group law. An example of an elliptic curve is the curve given by y2 = x3 − x + 1 plus the
point at infinity given by (0 : 1 : 0) in projective coordinates (obtained by the homogenized
equation zy2 = x3 − z2x+ z3 in the projective plane).

Given two non-infinity points P and Q on the curve, the line joining them intersects the
curve at a unique third point R (which may be infinity if the line is vertical). In this case
we define P + Q = R. If O is the point at infinity, we define it to be the identity element
by setting O + P = P for all P . This gives an abelian Lie group structure on the projective
curve, and it is not a matrix Lie group because all matrix Lie groups are affine varieties,
and elliptic curves are not.
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2.2.3 Representations of Lie groups

Definition 2.50. A (finite-dimensional) representation of a real or complex Lie group G
is a map of Lie groups G → GL(V ) where V is a finite-dimensional vector space over C or
R respectively. That is, the map is differentiable on the underlying manifold structures, and
is a group homomorphism.

As in the case of representations of finite groups, we may also refer to the representation
as a vector space V rather than the map G→ GL(V ), where the action on V is implied.

Definition 2.51. The character of a representation ρ : G → GL(V ) of a Lie group is the
map χρ : T → C defined by χρ(t) = tr(t). Here T is the maximal torus of G (for instance,
diagonal matrices in the case of GLn).

Characters of representations of Lie groups satisfy the following remarkable properties:

1. A representation of a Lie group is uniquely determined by its character.

2. Characters are additive with respect to direct sum: χV + χW = χV⊕W . Thus, writ-
ing a character in terms of characters of irreducible representations corresponds to
decomposing a representation into irreducibles.

3. Characters are multiplicative with respect to tensor product: χV χW = χV⊗W

As we have seen, many useful maps between matrix groups can be described by polyno-
mial equations in the variables. These give particularly nice representations of Lie groups.

Definition 2.52. A polynomial representation of a matrix Lie group G is a map G →
GL(Cn) (or to GL(Rn)) in which the matrix entries in the image are given by polynomials
in the entries of G.

Example 2.53. As we shall see later, there is one irreducible polynomial representation
of GLn(C) for each partition λ having at most n parts. The remaining (non-polynomial)
irreducible representations are determined by tensoring with a negative power of the de-
terminant representation formed by sending each matrix to the 1 × 1 matrix consisting of
its determinant. Thus understanding the irreducible polynomial representations suffices for
understanding the representation theory of GLn(C).

The polynomial representation V λ of GLn(C) corresponding to the partition λ has char-
acter given by the Schur function sλ(x1, . . . , xn) in n variables, where we think of an element
of the torus as a diagonal matrix with x1, . . . , xn on the diagonals.

It follows that all of the combinatorics of Schur functions that we developed last semester
is precisely what we need to understand the representation theory of GLn(C). We will prove
these assertions later in the course.
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2.3 Lie algebras and their representations

Roughly speaking, a Lie algebra captures the “local differential information” at the identity
element of a Lie group.

To motivate Lie algebras, here are some final facts about Lie groups that make the Lie
algebra’s importance clear:

1. Any connected Lie group is generated by any open neighborhood of the identity element
e. In particular, a map of Lie groups is determined by its restriction to a neighborhood
of e.

2. A map of Lie groups G→ H is determined by the induced differential map on tangent
spaces Te(G)→ Te′(H) where e, e′ are the identity elements of G and H respectively.

3. As a consequence to the above, a representation G → GL(V ) of Lie groups is deter-
mined by the map of tangent spaces

Te(G)→ TI(GL(V )).

Because of the last fact, in order to understand representations of Lie groups, understand-
ing their tangent spaces at the identity (especially for GLn) is all we need. This reduces it
to a linear problem which is much easier to understand.

2.3.1 The epsilon method

How does one compute the tangent space to a Lie group at the identity? We simply enforce
that the elements “very close” to the identity in the tangent space are “in” the Lie group,
as follows.

Definition 2.54. Define the indeterminant ε by the relation ε2 = 0, similar to how we can
define the imaginary number i to satisfy i2 = −1. In other words, we will work over the ring
of coefficients C[ε]/(ε2).

We now define the tangent space formally for matrix Lie groups only.

Definition 2.55. For a matrix Lie group G ⊆ GLn(C) defined by polynomial equations
f1, . . . , fm = 0, the tangent space TI(G) at the identity matrix I is the set of matrices X
such that

I + εX

satisfies the equations f1, . . . , fm over the extended coefficient ring C[ε]/(ε2).

Example 2.56. The tangent space TI(SLn(C)) is the set {X : det(I+εX) = 1}. An explicit
computation using the definition of ε shows that det(I+εX) = 1+εtrX, and so the condition
is equivalent to trX = 0. Thus sln(C) := TI(SLn(C)) = {X : trX = 0}.

Example 2.57. A similar analysis to the above shows that the Lie algebra corresponding
to GLn(C), denoted gln(C), is simply the set of all n× n matrices (with no restrictions).
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Now, notice that sln(C) is not closed under matrix multiplication. In general Lie algebras
do not have a well-defined product. Indeed, we can see that under the epsilon method,
multiplication in the Lie group turns into addition in the Lie algebra:

(I + εX)(I + εY ) = I + ε(X + Y ).

However, we do have a well-defined commutator. Indeed, if we consider the Lie group
commutator ghg−1h−1, we can derive an analogous operation on the Lie algebra by using the
epsilon method on both g and h separately using two independent commuting indeterminants
ε and σ, both of which square to 0, as follows.

(I + εX)(I + σY )(I + εX)−1(I + εY )−1 = (I + εX)(I + σY )(I − εX)(I − εY )

= (I + εX + σY + εσXY )(I − εX − σY + εσXY )

= I − εσXY − εσY X + εσXY + εσXY

= I + εσ(XY − Y X)

= I + εσ[X, Y ]

where [X, Y ] = XY − Y X.

Exercise 2.58. Show that [X, Y ] = XY − Y X is a well-defined bracket on sln(C), that is,
that tr(XY − Y X) = 0 for any matrices X, Y ∈ sln(C).

We now have finally motivated the abstract definition of a Lie algebra.

Definition 2.59. A Lie algebra is a vector space g along with a bilinear Lie bracket
[, ] : g× g→ g satisfying:

1. Skew-symmetry: [X, Y ] = [Y,X]

2. Jacobi identity: [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

It is not hard to verify that the commutator [X, Y ] = XY − Y X satisfies the above two
identities.

Here is the main theorem on the relationship between Lie groups and Lie algebras that
completes our story.

Theorem 2.60. A vector space g with a Lie bracket [, ] is a tangent space Te(G) of some
Lie group G if and only if it is a Lie algebra. Moreover, the connected component of e of G
is uniquely determined by g.

In other words, there is a one-to-one correspondence between Lie algebras and
connected Lie groups.

For the finite dimensional setting, a remarkable theorem shows that in fact we can always
assume that the Lie bracket [, ] is ordinary commutator of matrices.

Theorem 2.61. (Ado’s Theorem). Every finite-dimensional Lie algebra is isomorphic to a
matrix Lie algebra with the commutator bracket.

A map of Lie algebras is a map f : g→ h that is compatible with their Lie brackets:

[fg1, fg2] = [g1, g2].

Using this definition we can define a representation of a Lie algebra.

Definition 2.62. A representation of a Lie algebra is a map ρ : g 7→ gln(C) of Lie algebras.
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